
Anyone   with a tapeout deadline looming 
knows how finishing a new chip design keeps getting 
harder and harder. Fortunately, newly standardized high-
level languages like SystemC™, along with modern high-
level synthesis (HLS) tools are offering designers a way to 
escape the RTL “productivity jailhouse.”

Since the turn of the century, the semiconductor industry 
has been suffering slowing engineering productivity 
growth. While during that period the semiconductor 
industry has seen major sales growth, as semiconductors 
continue working their way into almost every facet of 
modern life, with very few exceptions profitability has 
remained stagnant or even declined.

Moore’s Law is often cited as the key driver and enabler of 
the semiconductor industry, and indeed the ability of the 
semiconductor manufacturing technologies to produce 
smaller transistors has very closely followed the smooth 
curve that it predicts. What is missing from this analysis is 
that in order for electronics companies 
to use these transistors to develop 
products, the ability of design engineers 
to create designs needs to increase at the 
same rate as the ability to manufacture 
transistors grows. 

Two factors have contributed to this 
growth of design productivity. The first is 
reuse. Very early on, engineers learned 
to reuse standardized transistor-layouts 
(“gates”), which were then combined 
into “cells” and “macrocells” enabling 
standard-cell ASIC design. These cells/
macrocells were later combined into 
“cores” and “subsystems” to create 
modern SoCs.

The second contributor to design 
productivity is the development of tools 
that allow the designer to work at a 
higher level of abstraction. At some point 
in the early 1990s the industry made a transition from 
mainly designing semiconductors using schematics at the 
gate level to mainly using logic synthesis at the register-
transfer level (RTL).

From the mid-1970s to the late 1990s, these two factors 
combined to raise designer productivity from 4-5 gates/
day up to 500-1000 gates/day. Figure 1 shows a slow 
increase in productivity that can be attributed to reuse and 
incremental tool improvements. This is followed by a jump 
in productivity at the point where the level of abstraction 
moved up to RTL. Since about 2005, however, IC designer 
productivity has leveled off. Current RTL-based design and 
verification methodologies have reached their limits.

Fortunately, new methodologies have started to emerge 
and be adopted by the industry. As of now, at least 24 (over 
50%) of the world’s leading semiconductor companies have 
begun adoption and deployment of high-level synthesis. 
HLS is the fastest-growing segment of EDA. Leading 
companies such as ST Micro, Sony, and NEC are already 
taping-out designs using HLS. The chairman of NEC said 
as early as 2002 that their internal HLS tool was used in 
all digital designs as their mainstream design flow. More 
recently, it was mentioned at a DAC panel last year that 
Sony had successfully completed more than 30 designs 
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Figure 1.  This chart shows the evolution of IC design from 
the mid-1970s to the present. The mid-1980s to 2000 was the 
semiconductor industry’s period of fastest innovation, growth, and 
value-creation. This was driven in very large part by an over-100x 
increase in designer productivity.



involving over 200 engineers using HLS. ST Micro has 
been quoted by public sources as saying that 90% of all 
their new digital IP development is done by starting at a 
behavior level of abstraction and using high-level synthesis 
to create RTL. 

Modeling at higher levels of abstraction (such as TLM) 
has been used for years by companies to accelerate 
simulation and verification of complex systems. Just as 
the development of RTL logic synthesis in the early 1990s 
led to a transition from using HDLs for verification only 
to broad adoption of HDLs in the RTL design flow, the 
development of high-level synthesis is moving companies 
toward TLM-driven design at a high level of abstraction.

Moving to a higher abstraction level offers opportunities 
for new kinds of reuse not possible at the register-transfer 
level. Microarchitecture decisions that bind an IP block 
to a particular application are handled automatically by 
high-level synthesis. Instead of having to specify what 
each part of the hardware is doing in every clock-cycle, 
the designer instead focuses on defining the functionality 
that meets the requirements and the range of latency and 
throughput constraints on that functionality. Instead of 
having to specify communication between blocks in terms 
of cycle-by-cycle signal behavior, designers can apply reuse 
to these interfaces, encapsulating the detailed protocol in 
terms of pre-defined “transactions.” With a modern high-
level synthesis tool, the designer can then automatically 
explore the area, speed, and power of a broad range of 
microarchitectures that meet those constraints, selecting 
the one that fits the intended application based on 
performance, power, and chip area considerations. The 
automatically-created RTL is used for logic synthesis and for 
the rest of the standard implementation flow. In this way, 
design teams can adopt and deploy high-level synthesis 
without disturbing their proven RTL-based procedures and 
tool flows.

Which Input Language Is Most 
Suitable for HLS?
Quite a few different languages have been proposed for 
use by design teams using HLS. The first HLS tools used 
RTL languages such as Verilog and VHDL. These languages 
were unsatisfactory for a number of reasons including their 
inadequacy as true high-level languages and the need for 
language translation from the C algorithm specification and 
the implementation language. Most recent approaches 
have tried to stay closer to the C algorithm by using a 
variation of C or a C++ library to add hardware capabilities 
to the C language. Synthesis variations on the C language 
include HardwareC, Handel-C, Cyber-C, Bach C, and 
Mentor’s Algorithmic C. Each of these uses C extensions or 
C++ libraries to address hardware requirements.

The fundamental differences between C++ and SystemC-
based high-level synthesis flows arise out of the nature of 
the two languages themselves:

C++ is a sequential programming language with a single • 
flow of control.

SystemC is a hardware design language with explicit 
support for modeling multiple independent entities 
that coordinate their activities by communicating 
through channels. 

With C++ you execute a program. • 

With SystemC you simulate hardware behavior.

C++ supports the specification and validation of a single • 
finite state machine.

SystemC supports the specification and validation of 
multiple interacting FSMs.

In simple dataflow cases, such as where each part of 
an algorithm consumes a fixed number of values and 
produces a fixed number of values, it is feasible to write 
the overall system as a set of C++ subroutines and write a 
main program that calls the subroutines in a fixed order. 
The outputs of one subroutine are used as inputs to 
later-executing subroutines. This is often used as a kind 
of “simulation” of the interoperation of the subroutines. 
Other cases—such as those where the number of values 
produced and consumed by each entity is dependent on 
the data being processed, or where there are feedback 
loops in the dataflow—are more difficult to model and 
verify using only a sequential language like C++. 

There are number of flaws in this approach. The greatest 
of these is that it is entirely non-standard and means that 
the IP product of the engineer’s effort can only be used 
with a single vendor’s toolset. Another great flaw is that 
the “simulation” that is performed by executing the C++ 
program does not in fact verify the correct concurrent 
execution of the implied modules. It also fails to verify the 
signal-level behavior that will be required in hardware to 
implement the data communication and synchronization 
protocols.

SystemC is the accepted industry standard for modeling 
concurrent hardware modules in C++. It provides a set of 
concurrent simulation semantics in a way that is supported 
by multiple vendors. Because the simulation semantics 
are standard and conform to the commonly accepted 
hardware design paradigm, it is possible to co-simulate 
these SystemC modules along with modules written in 
Verilog, VHDL, or SystemVerilog. Indeed, all of the major 
HDL simulator vendors provide a co-simulation capability 
for SystemC modules. 



Since 2005, the IEEE 1666™ standard for SystemC has 
provided standard syntax and semantics for representing 
hardware using a good high-level language that is 
appropriate for synthesis. Beyond this, industry agreement 
on a standard synthesizable subset is needed to facilitate 
portability of synthesizable 
hardware designs between 
SystemC synthesis tools. This 
work is currently underway in 
the Open SystemC Initiative’s 
(OSCI) synthesis working group.

The OSCI SystemC 
Synthesis Draft 
Standard
The OSCI synthesis working 
group (SWG) is focused on 
defining a meaningful minimum 
synthesizable subset of SystemC 
to establish a baseline for 
transportability of SystemC 
design code between HLS tools 
while allowing for continued 
innovation by SystemC-based 
HLS tool developers. With the 
participation of more than one 
dozen EDA, semiconductor, and 

systems companies, this working group has released a draft 
document for public review that describes this subset.

The subset includes a broad range of C++ and SystemC 
constructs consistent with the HLS requirement that 
it must be possible to determine the structure of the 
hardware statically at the time the HLS tool processes the 
design source code. Consequently, a C++ construct (such 
as a template) is included in the subset, while dynamic 
resolution of virtual functions is not. Figures 2 and 3 
summarize the included constructs. 

Expanding from HLS Toward 
an Integrated Design and 
Verification Flow
Working at a higher level vs. lower level of abstraction can 
be compared to cutting wood with a chain-saw vs. with 
an axe. It can be a lot more productive, but can be also a 
lot more dangerous if you don’t verify what you’re doing 
at every step. New, advanced verification methodologies 
will also need to be developed to enable broad adoption 
of HLS. Leading EDA companies today are investing 
significantly to develop advanced tools and methodologies 
enabling comprehensive verification at abstraction levels 
above RTL. One key is to develop approaches for verifying 
high-level/TLM IP that optimally map different verification 
tasks to each level of abstraction in order to minimize the 
overall time and effort spent. The basic elements of this 
new approach are illustrated in Figure 4. 

Figure 4. TLM design and verification flow.
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Figure 2. This table lists C++ constructs included in the draft 
synthesizable subset.

Figure 3. This table lists SystemC constructs included in the draft 
synthesizable subset.



Design teams that have adopted these 
new methodologies see improvements 
in the quality of the circuits they can 
produce, the speed of their simulation and 
debug cycles, and in overall productivity, 
as shown in Figure 5.

Conclusion
Just as design teams in the early 1990s 
adopted logic synthesis and RTL design 
to productively take advantage of the 
larger circuits made possible by new 
semiconductor manufacturing techniques, 
today’s design teams are adopting high-
level synthesis using the SystemC standard 
to take advantage of the number of 
transistors available at 90nm and below. 
Given that the RTL design abstraction has 
been in use for more than 15 years, it is no 
longer possible to consider it the leading-
edge design approach that is required 
to bring us new, exciting consumer and 
industrial electronic products. Fortunately 
the move to the next level of abstraction 
using high-level synthesis in SystemC is well underway, 
and is demonstrating that it can deliver the required 
productivity.
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Figure 5. Benefits of new TLM design and verification methodology 
vs. traditional RTL (summary of actual data obtained in 2007-2008 
by early adopters).
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