
Anyone with a tapeout deadline looming
knows how finishing a new chip design keeps getting
harder and harder. Fortunately, newly standardized high-
level languages like SystemC™, along with modern high-
level synthesis (HLS) tools are offering designers a way to
escape the RTL “productivity jailhouse.”

Since the turn of the century, the semiconductor industry
has been suffering slowing engineering productivity
growth. While during that period the semiconductor
industry has seen major sales growth, as semiconductors
continue working their way into almost every facet of
modern life, with very few exceptions profitability has
remained stagnant or even declined.

Moore’s Law is often cited as the key driver and enabler of
the semiconductor industry, and indeed the ability of the
semiconductor manufacturing technologies to produce
smaller transistors has very closely followed the smooth
curve that it predicts. What is missing from this analysis is
that in order for electronics companies
to use these transistors to develop
products, the ability of design engineers
to create designs needs to increase at the
same rate as the ability to manufacture
transistors grows.

Two factors have contributed to this
growth of design productivity. The first is
reuse. Very early on, engineers learned
to reuse standardized transistor-layouts
(“gates”), which were then combined
into “cells” and “macrocells” enabling
standard-cell ASIC design. These cells/
macrocells were later combined into
“cores” and “subsystems” to create
modern SoCs.

The second contributor to design
productivity is the development of tools
that allow the designer to work at a
higher level of abstraction. At some point
in the early 1990s the industry made a transition from
mainly designing semiconductors using schematics at the
gate level to mainly using logic synthesis at the register-
transfer level (RTL).

From the mid-1970s to the late 1990s, these two factors
combined to raise designer productivity from 4-5 gates/
day up to 500-1000 gates/day. Figure 1 shows a slow
increase in productivity that can be attributed to reuse and
incremental tool improvements. This is followed by a jump
in productivity at the point where the level of abstraction
moved up to RTL. Since about 2005, however, IC designer
productivity has leveled off. Current RTL-based design and
verification methodologies have reached their limits.

Fortunately, new methodologies have started to emerge
and be adopted by the industry. As of now, at least 24 (over
50%) of the world’s leading semiconductor companies have
begun adoption and deployment of high-level synthesis.
HLS is the fastest-growing segment of EDA. Leading
companies such as ST Micro, Sony, and NEC are already
taping-out designs using HLS. The chairman of NEC said
as early as 2002 that their internal HLS tool was used in
all digital designs as their mainstream design flow. More
recently, it was mentioned at a DAC panel last year that
Sony had successfully completed more than 30 designs

The Next IC Design Methodology
Transition Is Long Overdue
Michael Meredith and Steve Svoboda, Open SystemC Initiative

1970’s 1980 1990 2000 2010

1

10

100

1000

10000

P
ro

d
u

ct
iv

it
y,

 O
ri

g
in

al
 D

es
ig

n
s

(g
at

es
/d

ay
)

0.5µ mainstream
~500k-1m gates/IC

0.65µ mainstream
~500k-1m gates/IP

SSI, MSI, LSI

Transistor
level (SPICE)

Semiconductor Industry
“Golden Age”

VLSI

ULSI

Gate level
(Schematic

Capture)

Register-transfer level
(Logic Synthesis)

~ 5 years

~15+ years
Transaction / Behavior
(High-level Synthesis)

Evolution of IC Design

Figure 1. This chart shows the evolution of IC design from
the mid-1970s to the present. The mid-1980s to 2000 was the
semiconductor industry’s period of fastest innovation, growth, and
value-creation. This was driven in very large part by an over-100x
increase in designer productivity.

involving over 200 engineers using HLS. ST Micro has
been quoted by public sources as saying that 90% of all
their new digital IP development is done by starting at a
behavior level of abstraction and using high-level synthesis
to create RTL.

Modeling at higher levels of abstraction (such as TLM)
has been used for years by companies to accelerate
simulation and verification of complex systems. Just as
the development of RTL logic synthesis in the early 1990s
led to a transition from using HDLs for verification only
to broad adoption of HDLs in the RTL design flow, the
development of high-level synthesis is moving companies
toward TLM-driven design at a high level of abstraction.

Moving to a higher abstraction level offers opportunities
for new kinds of reuse not possible at the register-transfer
level. Microarchitecture decisions that bind an IP block
to a particular application are handled automatically by
high-level synthesis. Instead of having to specify what
each part of the hardware is doing in every clock-cycle,
the designer instead focuses on defining the functionality
that meets the requirements and the range of latency and
throughput constraints on that functionality. Instead of
having to specify communication between blocks in terms
of cycle-by-cycle signal behavior, designers can apply reuse
to these interfaces, encapsulating the detailed protocol in
terms of pre-defined “transactions.” With a modern high-
level synthesis tool, the designer can then automatically
explore the area, speed, and power of a broad range of
microarchitectures that meet those constraints, selecting
the one that fits the intended application based on
performance, power, and chip area considerations. The
automatically-created RTL is used for logic synthesis and for
the rest of the standard implementation flow. In this way,
design teams can adopt and deploy high-level synthesis
without disturbing their proven RTL-based procedures and
tool flows.

Which Input Language Is Most
Suitable for HLS?
Quite a few different languages have been proposed for
use by design teams using HLS. The first HLS tools used
RTL languages such as Verilog and VHDL. These languages
were unsatisfactory for a number of reasons including their
inadequacy as true high-level languages and the need for
language translation from the C algorithm specification and
the implementation language. Most recent approaches
have tried to stay closer to the C algorithm by using a
variation of C or a C++ library to add hardware capabilities
to the C language. Synthesis variations on the C language
include HardwareC, Handel-C, Cyber-C, Bach C, and
Mentor’s Algorithmic C. Each of these uses C extensions or
C++ libraries to address hardware requirements.

The fundamental differences between C++ and SystemC-
based high-level synthesis flows arise out of the nature of
the two languages themselves:

C++ is a sequential programming language with a single •
flow of control.

SystemC is a hardware design language with explicit
support for modeling multiple independent entities
that coordinate their activities by communicating
through channels.

With C++ you execute a program. •

With SystemC you simulate hardware behavior.

C++ supports the specification and validation of a single •
finite state machine.

SystemC supports the specification and validation of
multiple interacting FSMs.

In simple dataflow cases, such as where each part of
an algorithm consumes a fixed number of values and
produces a fixed number of values, it is feasible to write
the overall system as a set of C++ subroutines and write a
main program that calls the subroutines in a fixed order.
The outputs of one subroutine are used as inputs to
later-executing subroutines. This is often used as a kind
of “simulation” of the interoperation of the subroutines.
Other cases—such as those where the number of values
produced and consumed by each entity is dependent on
the data being processed, or where there are feedback
loops in the dataflow—are more difficult to model and
verify using only a sequential language like C++.

There are number of flaws in this approach. The greatest
of these is that it is entirely non-standard and means that
the IP product of the engineer’s effort can only be used
with a single vendor’s toolset. Another great flaw is that
the “simulation” that is performed by executing the C++
program does not in fact verify the correct concurrent
execution of the implied modules. It also fails to verify the
signal-level behavior that will be required in hardware to
implement the data communication and synchronization
protocols.

SystemC is the accepted industry standard for modeling
concurrent hardware modules in C++. It provides a set of
concurrent simulation semantics in a way that is supported
by multiple vendors. Because the simulation semantics
are standard and conform to the commonly accepted
hardware design paradigm, it is possible to co-simulate
these SystemC modules along with modules written in
Verilog, VHDL, or SystemVerilog. Indeed, all of the major
HDL simulator vendors provide a co-simulation capability
for SystemC modules.

Since 2005, the IEEE 1666™ standard for SystemC has
provided standard syntax and semantics for representing
hardware using a good high-level language that is
appropriate for synthesis. Beyond this, industry agreement
on a standard synthesizable subset is needed to facilitate
portability of synthesizable
hardware designs between
SystemC synthesis tools. This
work is currently underway in
the Open SystemC Initiative’s
(OSCI) synthesis working group.

The OSCI SystemC
Synthesis Draft
Standard
The OSCI synthesis working
group (SWG) is focused on
defining a meaningful minimum
synthesizable subset of SystemC
to establish a baseline for
transportability of SystemC
design code between HLS tools
while allowing for continued
innovation by SystemC-based
HLS tool developers. With the
participation of more than one
dozen EDA, semiconductor, and

systems companies, this working group has released a draft
document for public review that describes this subset.

The subset includes a broad range of C++ and SystemC
constructs consistent with the HLS requirement that
it must be possible to determine the structure of the
hardware statically at the time the HLS tool processes the
design source code. Consequently, a C++ construct (such
as a template) is included in the subset, while dynamic
resolution of virtual functions is not. Figures 2 and 3
summarize the included constructs.

Expanding from HLS Toward
an Integrated Design and
Verification Flow
Working at a higher level vs. lower level of abstraction can
be compared to cutting wood with a chain-saw vs. with
an axe. It can be a lot more productive, but can be also a
lot more dangerous if you don’t verify what you’re doing
at every step. New, advanced verification methodologies
will also need to be developed to enable broad adoption
of HLS. Leading EDA companies today are investing
significantly to develop advanced tools and methodologies
enabling comprehensive verification at abstraction levels
above RTL. One key is to develop approaches for verifying
high-level/TLM IP that optimally map different verification
tasks to each level of abstraction in order to minimize the
overall time and effort spent. The basic elements of this
new approach are illustrated in Figure 4.

Figure 4. TLM design and verification flow.

Control structures
 - if/else constructs
 - for() and while() loops
 - switch() constructs
 - references
 - statically-determined pointers

User-defined data types
 - structures
 - classes
 - inheritance
 - operator overloading

Templates
 - template classes
 - template functions

C++ data types
 - Integer C++ data types
 - Operators on C++ integer
 data types

C++ Constructs

SC_METHOD

SystemC Constructs

SC_MODULE

SC_CTHREAD

sc_in<>

sc_out<>

sc_export<>

bool

sc_int<>
sc_uint<>

Modules & Threads Ports Data Types

sc_bigint<>
sc_biguint<>

TLM Design and
Verification Flow

Use Cases

Coding Styles, Abstractions

Software
development

Software
performance

Architectural
analysis

Loosely-timed

Hardware
verification

Approximately-timed

Mechanisms

Blocking
interface

Non-blocking
interfaceDMI Sockets Phases

Generic
payload

Quantum Extensions

1970’s 1980 1990 2000 2010

1

10

100

1000

10000

P
ro

d
u

ct
iv

it
y,

 O
ri

g
in

al
 D

es
ig

n
s

(g
at

es
/d

ay
)

Functional Verification

Implementation Verification

Algorithm Verification

Verification

Verification

Verification

Environment

Environment

Environment

1

2

3

Reuse Architecture to
Micro-architecture

Reuse Algorithm
to Architecture

TLM
Methodology

HLSC/C++, SC, Simulink
Simulation

High-Level Model
Algorithm DUT SystemC TLM

Simulation

RTL
Simulation

HW
Accel

Figure 2. This table lists C++ constructs included in the draft
synthesizable subset.

Figure 3. This table lists SystemC constructs included in the draft
synthesizable subset.

Design teams that have adopted these
new methodologies see improvements
in the quality of the circuits they can
produce, the speed of their simulation and
debug cycles, and in overall productivity,
as shown in Figure 5.

Conclusion
Just as design teams in the early 1990s
adopted logic synthesis and RTL design
to productively take advantage of the
larger circuits made possible by new
semiconductor manufacturing techniques,
today’s design teams are adopting high-
level synthesis using the SystemC standard
to take advantage of the number of
transistors available at 90nm and below.
Given that the RTL design abstraction has
been in use for more than 15 years, it is no
longer possible to consider it the leading-
edge design approach that is required
to bring us new, exciting consumer and
industrial electronic products. Fortunately
the move to the next level of abstraction
using high-level synthesis in SystemC is well underway,
and is demonstrating that it can deliver the required
productivity.

Michael Meredith is Vice President of Technical Marketing
for Forte Design Systems and is President of OSCI. Steve
Svoboda is Technical Marketing Director of System Design &
Verification for Cadence Design Systems and serves as the
Cadence representative to the OSCI Promotions Group.

www.SystemC.org

Open SystemC In i t iat ive
Defining and Advancing SystemC Standards

February 2010

Michael
Meredith

Steve
Svoboda

Figure 5. Benefits of new TLM design and verification methodology
vs. traditional RTL (summary of actual data obtained in 2007-2008
by early adopters).

Motion-detection IP

SystemC to RTL
in 10 days

vs. Manual RTL
in 3 months

I/F controller IP

FPGA to ASIC
retargeting in

1-2 days vs.
2-3 weeks (manual)

10x+ productivity increases

RTL Verilog
(human)

100

75

50

25

0

Si
m

u
la

ti
o

n
 t

im
e

(%
)

SystemC
(synthesizable)

5-10x faster simulation/debug

RTL Verilog
(human)

SystemC (for synthesis)

C/C++ (algorithm)

1000

800

600

400

200

0

Li
n

es
 o

f C
o

d
e

~3x more efficient/compact designs

Best manual RTL size (gates)

H
LS

 g
en

er
at

ed

R
TL

 s
iz

e
(g

at
es

)

1000000

100000

10000

1000

100

10
 10 100 1000 10000 100000 1000000

Equal/better QoR than manual

