SystemRDL 2.0/ D9
Register Description Language

October 16, 2017

Copyright © 2015 - 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

October 16, 2017 SystemRDL 2.0/ D9

Abstract: Information about the registers in a circuit design is required throughout its lifetime, from initial
architectural specification, through creation of an HDL description, verification of the design, post-silicon
testing, to deployment of the circuit. A consistent and accurate description of the registers is necessary so the
registers specified by the architects and the registers programmed by the users of the final product are the
same. SystemRDL is a language for describing registers in circuit designs. SystemRDL descriptions are used
as inputs to software tools that generate circuit logic, test programs, printed documentation, and other register
artifacts. Generating all of these from a single source ensures their consistency and accuracy. The description
of a register may correspond to a register in an preexisting circuit design, or it can serve as an input to a syn-
thesis tool that creates the register logic and access interfaces. A description captures the behavior of the in-
dividual registers, the organization of the registers into register files, and the allocation of addresses to
registers. A variety of register behaviors can be described: simple storage elements, storage elements with
special read/write behavior (e.g., ‘write 1 to clear’), interrupts, and counters.

Keywords: hardware design, electronic design automation, SystemRDL, hierarchical register description,
control and status registers, interrupt registers, counter registers, register synthesis, software generation, doc-
umentation generation, bus interface, memory, register addressing.

i Copyright © 2015 - 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Public Review Specification October 16, 2017

Notices

Accellera Systems Initiative (Accellera) Standards documents are developed within Accellera and the
Technical Committee of Accellera. Accellera develops its standards through a consensus development pro-
cess, approved by its members and board of directors, which brings together volunteers representing varied
viewpoints and interests to achieve the final product. Volunteers are members of Accellera and serve without
compensation. While Accellera administers the process and establishes rules to promote fairness in the con-
sensus development process, Accellera does not independently evaluate, test, or verify the accuracy of any
of the information contained in its standards.

Use of an Accellera Standard is wholly voluntary. Accellera disclaims liability for any personal injury, prop-
erty or other damage, of any nature whatsoever, whether special, indirect, consequential, or compensatory,
directly or indirectly resulting from the publication, use of, or reliance upon this, or any other Accellera
Standard document.

Accellera does not warrant or represent the accuracy or content of the material contained herein, and
expressly disclaims any express or implied warranty, including any implied warranty of merchantability or
suitability for a specific purpose, or that the use of the material contained herein is free from patent infringe-
ment. Accellera Standards documents are supplied “AS IS.”

The existence of an Accellera Standard does not imply that there are no other ways to produce, test, measure,
purchase, market, or provide other goods and services related to the scope of an Accellera Standard. Further-
more, the viewpoint expressed at the time a standard is approved and issued is subject to change due to
developments in the state of the art and comments received from users of the standard. Every Accellera
Standard is subjected to review periodically for revision and update. Users are cautioned to check to deter-
mine that they have the latest edition of any Accellera Standard.

In publishing and making this document available, Accellera is not suggesting or rendering professional or
other services for, or on behalf of, any person or entity. Nor is Accellera undertaking to perform any duty
owed by any other person or entity to another. Any person utilizing this, and any other Accellera Standards
document, should rely upon the advice of a competent professional in determining the exercise of reasonable
care in any given circumstances.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they
relate to specific applications. When the need for interpretations is brought to the attention of Accellera,
Accellera will initiate action to prepare appropriate responses. Since Accellera Standards represent a consen-
sus of concerned interests, it is important to ensure that any interpretation has also received the concurrence
of a balance of interests. For this reason, Accellera and the members of its Technical Committees are not
able to provide an instant response to interpretation requests except in those cases where the matter has pre-
viously received formal consideration.

Comments for revision of Accellera Standards are welcome from any interested party, regardless of mem-
bership affiliation with Accellera. Suggestions for changes in documents should be in the form of a proposed
change of text, together with appropriate supporting comments. Comments on standards and requests for
interpretations should be addressed to:

Accellera Systems Initiative.

8698 Elk Grove Bldv Suite 1, #114
Elk Grove, CA 95624

USA

Note: Attention is called to the possibility that implementation of this standard may require use of
subject matter covered by patent rights. By publication of this standard, no position is taken with
respect to the existence or validity of any patent rights in connection therewith. Accellera shall not

Copyright © 2015 - 2017 Accellera. All rights reserved. iii
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

October 16, 2017 SystemRDL 2.0/ D9

be responsible for identifying patents for which a license may be required by an Accellera standard
or for conducting inquiries into the legal validity or scope of those patents that are brought to its
attention.

Accellera is the sole entity that may authorize the use of Accellera-owned certification marks and/or trade-
marks to indicate compliance with the materials set forth herein.

Authorization to photocopy portions of any individual standard for internal or personal use must be granted
by Accellera, provided that permission is obtained from and any required fee is paid to Accellera. To arrange
for authorization please contact Lynn Bannister, Accellera Systems Initiative, 8698 Elk Grove Bldv Suite 1,
#114, Elk Grove, CA 95624, phone (916) 670-1056, e-mail lynn@accellera.org. Permission to photocopy
portions of any individual standard for educational classroom use can also be obtained from Accellera.

Suggestions for improvements to the SystemRDL 2.0 Specification are welcome. They should be sent to the
SystemRDL email reflector

systemrdl@lists.accellera.org

iv Copyright © 2015 - 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Public Review Specification October 16, 2017

Introduction

The SystemRDL language was specifically designed to describe and implement a wide variety of registers
and memories. Using SystemRDL, developers can automatically generate and synchronize the register
specification in hardware design, software development, verification, and documentation. The intent behind
standardizing the language is to drastically reduce the development cycle for hardware designers, hardware
verification engineers, software developers, and documentation developers.

SystemRDL is intended for
— RTL generation
— RTL verification
— SystemC generation
— Documentation
— Pass through material for other tools, e.g., debuggers

— Software development

Copyright © 2015 - 2017 Accellera. All rights reserved. v
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

October 16, 2017 SystemRDL 2.0/ D9

Participants

The following members took part in the SystemRDL Working Group (RDWG):

Vi

Miles McCoo, Intel Corporation, Chair RDWG
Joe Daniels, Technical Editor

Accellera Systems Initiative, Inc.: Joe Daniels

Allied Member: Michael Faust

Cisco Systems, Inc: Steve Russell, Somasundaram Arunachalam
Intel Corporation: Miles McCoo

Magillem Design Services: Guillaume Godet-Bar

NVIDIA Corporation: John Berendsen

Semifore, Inc: Richard Weber

Copyright © 2015 - 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Public Review Specification

This is an unapproved Accellera Standards Draft, subject to change.

October 16, 2017

Contents
1 OVEIVIBW ...ttt ettt ettt ettt et s a et b et s a e et e e bt e bt e et e bt eb e et e eaeeeeeem et ebeemeesbeemteabeenseebeenseeseenteane 1
O B 1T o T OO URPRUSTRURSP 1
1.2 PUIPOSE .eeeeeeiieceteete et ettt e et e it e sttt e teestbe e beessaeenbeessseenbeesseesnseeseeenseansseenseensseanseenseesssaenseesees 1
1.3 IMIOTIVATION 1.ttt ettt st b et e h et bt et e eb et sae et e sbeenaees e e teebeenteeseenneene 1
1.4 Backward coOmpPatibilitycooeieiiiiiiiiieie e 2
1.5 CONVENLIONS USE ...cutiutiiiiiiieiieie ettt ettt ettt ettt et et e et sae e tesaeenbeebeetesbeen e sseeneeene 2
1.5.1 Visual cues (INEta-SYNTAX) ..ecceeririeriiiierieniieieeieeteete ettt ettt et sbee e ssee e ene 2
1.5.2 Notational CONVENTIONSccuietiruieiiriieiiiteete st steeteeteeteetee et st estesbeenbesbeentesbeensesseeneeene 3
1.5.3 EXAMPIES coevieiiieieeiie ettt ettt ettt et e et sta e e beebaesrbeenbeeesseesaeenaeenne 3
1.6 Use of color in this standard............ocoeoeriiiiiiiieieeee et 3
1.7 Contents Of this Standard.............cooeeieiiiii e 3
2. RETEIEIICES ...ttt ettt ettt e e bt et s bt e st e e bt et eeb e en bt e bt et e eaeenbesaeenbeeneenneas 5
3. Definitions, acronyms, and abbreViations.ceeeurrirriereeeriere ettt ee e see e seeeeeneas 7
3.1 D INIIONS ..eeutviitieiieeeie et e ettt ettt e ettt e et e e teesteeesaeetaeeabeesaeseseessaeesseessaasaeenseessseesseeseaessaeseens 7
3.2 Acronyms and abDIrEVIAIONScceeieruiriereiierte ettt eete et e st et e saeeseeseeesesseessesseenseeneeeeens 8
4, LeXiCal CONVEINTIONScuviiiiiiiiieiieciieite et eete et e e et esaeeteesebeesteessseeabeessseesseassseesseassseanseesessssenseenssas 9
O I VA 1y o ot 9
T 003111 3515 1L TSRS PRPP 9
4.3 TACNEITIETS 1uveeeiieiieeiie ettt ettt e e et e et e e bt e st e eateesabeesbeessseesseessaeesseesssessbaensesesseeseensnas 9
O o) {0 (¢ ST 10
A5 SHIINES e eveeeeeteeteete ettt ettt ettt ettt a et h bt bt a bbbttt et et ea e bbb b e e nenee 10
4.0 INUIMDETSveitiiiiiietieciie et eette et et e ebeesteeetteesbeesebeesseesssaesseesseessseassessseanssassssensaesssassseesssessseenes 11
5. General concepts, rules, and PrOPETLIEScceeeriririeieiririrereneerente ettt ettt seesaene 13
5.1 Key concepts and general TUIEScoueeririririnicieicieieeeesesesee ettt 13
5.1.1 Defining COMPONENLSccueeieriieieniieieeteeeesteestesreeaesseesesseessesseensesseesesseessesseesesses 13
5.1.2 Instantiating COMPONEILSccveveereerueeriererseeriessessenseesessesssessesseessesseessesssessessaessens 16
5.1.3 Specifying cOmMpPONent ProPertiesceccerveereerreriuerersresreeeesseeseesseeseessesssessessaessens 21
5.1.4 Scoping and NAMESPACESccveeeerrerieruereesreriersenaesseesesseeseessesseessesssessesssessesssessens 23
5.2 General COMPONENE PIOPETLIESvvevierrerrieierieeierresresteetesseesesseessesseessesseassesseessesseessesseessesses 25
5.2.1 UNIVETSal PrOPEITIESeevervieeiiiieieniieieniieiestestesseseaesseessesseessessesseessesseessessessesssessens 25
5.2.2 Structural PrOPEILIESccvecvieieiieierieeterieetestestesteeesesteessesseessesseeseesseessesseensessesssessens 26
5.3 CoNtENt AEPIECALION......ccuveiiieretieeiertieteteetesteetesresaesteesesseessesseessesseessesseessesseessesseersesseensessens 27
531 SEMANLICS ..eeueiiiiiiiieetintertintet ettt ettt sttt se ettt eb bbbt bbbt bbb naen 27
5.3.2 EXAMPIES cevieieieciieieieeteie ettt sttt e st et e st eaesneenseenean 27
6. DIALA LYPES 1.ttt et ettt ettt e b e bttt e h e e sa bt e bt e it e e bt e satesabeeshaesnbeeane 29
0.1 OVEIVIEW w.iiiiiiiiie sttt ettt eb bbbt bbbt b ettt et eateb b e bt e bt sb e e b benaeneen 29
6.2 Primary data tYPES ...c.ecueerieiieiertieiesietettete st e e stestesteeaesteesse st enbesteesseeteenseeseenseeneenaesseensennenn 29
6.2.1 Signed and unsigned data tYPEeScceoieierieriereiieie e 29
6.2.2 StrING data tYPE .eoceereireieieeiieieieeiere ettt ettt ettt e et et e sreeaesreensennean 30
6.2.3 B001ean data tYPE ..ccveceerviiiieiieiieieeie ettt et sre e saeensennees 30
6.2.4 Reserved enumeration tYPESc.cceecverrieeeruerreerierreeisesieesesseessesseesesseessesseessessesssessens 30
Copyright © 2015 - 2017 Accellera. All rights reserved. vii

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

October 16, 2017 SystemRDL 2.0/ D9

viii

6.2.5 ENUIMETALIONS ..eciuvieiiieitieiiieitiesieeiteesiteeteesteeseaeeteesesesseessseesseessesesseesssessseessseasseesseens 30
6.2.6 1dentifier TEfEIENCEScoiviiriiriiiiieieieeeec ettt 32
6.3 AGEIegate data tYPES . .cvereieiesiieiieieeiieiettete st ete st ete st ae sttt sttt ettt eete et e st et e e neeaesneenseenean 33
0.3. 1 ATITAYS teotieiieeie ettt ettt et ettt et e sttt e et e et e st te et e e tte e beenae e et e e aaeenbeestbeenbeennae s 33
0.3.2 SHIUCLUIES ..ottt ettt ettt ettt s bt e e bt et e st e es e bt eneeebe et e abeeeesbeensesnean 35
6.4 Type COMPAIDIIILY «ouveeuiiiiiiiitiiieee ettt et b et st sbe e nbe s 37
TR T O 11 XS TSRS 37
EXPIOSSIONS ...uvevieiieieeeietietieteete et et ete st estesteesbeeseeseestesseeseeseessesseensesseassenseessanseessesaessenseensenseansensas 39
T1 OVEIVIEW .ottt ettt ettt b sttt et et et e bt e st e bt eh e eb e e bt e bt b e b et en e m b et eneesteseenesbeebesbesaennan 39
7.2 OPCTALOTS ...veeeveeuiieeireeteeeiteeteestte et esttessaeeabeesateesseessseesseessseenseessesnseessseanseenssesnseenssesnseessnenssennes 39
7.2.1 ASSIZNMENE OPETALOTS ..o.verueiiiriieiieiientietieteeiceeesteeetesteeeee st e eseenteeneeseeeneesbesneesaeeneenneas 40
7.2.2 LOZICAL OPCTALOTS ..cueevieeeiieieiieiieeiieie et eeesteetesteenaesteeaee st e este st eneeseeeneeeneenesneenseenean 40
7.3 EXPression evValuation TULES..........cceerierieeieniieiese et eie st este e ete e etesteessesseeseesseensesseessesseensensees 40
7.3.1 Rules for determining eXpreSsion tYPESc.ecververreecvereerierreeiverieeseesseeseesseessesseessesses 40
7.3.2 Rules for evaluating eXpreSSIONSccverviereerieeeeiueseereesreesesseeeesseessesseessesseessesses 41
STEINALS ...ttt et ettt h e a e et ae et he et e bt e e bt e et ehe et e eaeeneesaeeneennean 43
T B 08 (T L1 15 o) USRS 43
8.2 SIGNAL PIOPETLIES. .. .eoveruirtirtitinteteiteteitett ettt ettt ettt be sttt ettt ebe et esbesbe et betens 43
8.2.1 SEIMANLICS ..eeueeuieiieiietintertest ettt ettt st b e sttt et ea e bt e bt ebeeb e e bt bbb b naen 43
LI 5 <: 11111 (OSSR PUUSP 43
8.3 Signal definition and INStANTIATION.ecviiriierieeiestieeeete e e ste et ereeseeebeeseneenbeenes 44
8.3.1 SEIMANTICS ..eevieierieiiieeiieitieete et eseeeteesteesbe e teestseesbeessseesseessseesseessseesseesseessseesssensseenes 44
8.3.2 EXAMPIE .ottt 44
Field COMPONENLc.eiuiiiiiiiieietet ettt ettt ettt et ettt ebe st s b e e aenee 45
9.1 TNETOAUCTION ...ttt eb e bbbttt ettt et eb et ebe bt ebesbenaenean 45
9.2 Defining and instantiating fleldsSccvviriiieriiiiiiiieeece e e 45
0.3 USING fIeld INSLANCES .. .eeveeuieeiitieieetieiete ettt ettt et et e st e s et et e s et et e saeeeeseeeneeneas 45
0.4 Field ACCESS PIOPEITIES ...eeveeueetieeietieiieteetie st ete st etesteetesteeetesbe et e eteeneeseeeneeeseeneesneeneesreensennean 46
0.4 1 SEIMANLICS ..eeveevieuietietintertintet ettt ettt ettt st sttt e e et et ebeebeebeebe et e ebesbesbesbebenaen 47
0.4.2 EXAMPIC .ioviriiieieiiieieiteieie ettt ettt st b ettt et et et te st e eaeereesaeenteeaeensenaeas 48
9.5 Hardware SiZNal PrOPEITICS.......ccueririerieerertieiestesteetesteeeesteeesesteestesseessesseessesseessesseessesseessesses 48
9.5.1 SEMANTICS ...evetieiietieiete ettt sttt ettt b et s be et s et e naesaeesbesbeenbeeseenaeene 48
LT 25 < 111 o) (<SR S 48
9.6 SOftWAIE ACCESS PrOPEILIES ...eovvevieeeeieriierieetieteetenteestesseestesseeeesseessesseessesseessessaessenseensesssensesnes 49
9.6.1 SEIMANTICS ..eevieierieitieetieitieete et eseeeteeteesbe e teestseebeessseesseessseasseessseessaasssessseesssensennes 50
0.6.2 EXAMPIES .eeoeieiieiieieiieeie ettt ettt sttt et s et et e st naeeneeaesneensennean 51
9.7 HAardware aCCESS PIOPEITICSccveeverrierrerrieriestietesreesaesteesesseessesseessesseessesseessesseessesseessesseessesses 51
0.7.1 SEIMANLICS ..eeueeuiiuieiietintetert ettt ettt et e be s bt bt st e b s e et et et et eseebeebeebtebeebeabestenbenbenaens 52
L 5 <: 1111 (USSP 53
0.8 COUNLET PIOPETLICSveueeeueeueeeetieiiesteenteteeneesteeteseesneesseeneesaeenteseeneasseensesseeneesseensesseensesseensenseas 53
9.8.1 Counter incrementing and dECrEMENTINGcceceevverireieriieierieeieneeeeeseeeeeseesneneens 53
9.8.2 Counter saturation and thresholdcccoceoriiniininininineee 54
0.9 INTEITUPE PTOPETTIES ..eeeuvreurieieerteesiieeteerttesteesteeteestreeseessaesnseessressseessesnsesseesnseesseessseesseesssesnes 58
9.9.1 SEMANTICSeeteeeietieiiete ettt ettt ettt ettt et e bt e e bt e bt saeesaeseeenbeebeenbeeneeneene 61
O 5 < 111 o) (<O TO PR RPRRRRR 61
9.10 Miscellaneous field Propertiesccovverieririeierieieree ettt see e eees 61
9.10.1 SEIMANTICS ..euvitiutenieiieiietieicrt ettt ettt sttt st ettt e bt e bt ebeebe et b st e bebeaens 62
9.10.2 EXAMPIE ..ocvviiieiiiiieiecie ettt ettt ettt et sb e et a e e st e sb e baesbeereenseeraenaeens 62

Copyright © 2015 - 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Public Review Specification

10.

11.

12.

13.

14.

REZISTEI COMPONENLcuiiiiiiiieienie ettt ettt ettt

10.1 Defining and instantiating re@iSterS..........ccerververrerereerreerierreeeereeeeerseseessesneas
10.2 InStantiating TEGISTETSeevverveeriereieeeeiieieseestesteeeeetesseeseeseensesseessesseensesneensesseas
10.3 Instantiating internal TEZISTEIScvervieierieieerieeteeieeeete et et eeeseeereeseseesaeeeees
10.4 Instantiating external TEZISLEISccevieieruirierieriieie ettt
10.5 Instantiating alias TEZISLEISccueruieriireieierieeierte et ee et et et ree e ee e seeeneas
10.5.1 S@MANTICS ..eeeuveeieiieeieieeieeie ettt eee sttt ettt eee st e e eneeseeeneas
10.5.2 EXAMPIE .oooieiieiieiieiieieetee ettt ettt aeenean
10.6 REZIStET PIOPEITICS. . cuviivierriirieiertieeestietesteeeesseeteessesseesesseessesseessesseessesseessessees
10.6.1 SEMANTICS ..eeuviiieiietieieeieeie ettt sttt ettt e s ae e
10.6.2 EXAMPIE .ooovieiieiieiieiieeee e
10.7 Understanding field ordering in re@iSters.........eceeeruivreruenieveieeeenenenenrennene
10.7.1 SEMANTICS ...eovirviietiieieieiieieeteet ettt sttt ettt ettt
10.7.2 EXAMPIES .ovveiieiieiieiieiieieieeeeie ettt eeeere bt ere e sseeaeeaeas
10.8 Understanding interrupt TEZISLEISccuerurrueruierieitieieeieeeeeeeete et
T0.8.1 SEMANTICS ...eeuvieieiietieieeit ettt sttt ettt e nee e
10.8.2 EXAMPIC ..oovieiieiieiieeieeeeee ettt

MEMOTY COMPONENLEeeiuieiiiiieiriitteriitee ettt eei ettt e ettt e eribeeesteeesbbeesasbeesabbeesareesnaeees

11.1 Defining and instantiating MEMOTIESceeevueerreerieerreerieerieesreenreesveesseenenens
11.2 SEMANTICSeeuiiiieiiiieieeieete ettt sttt ettt et sb et st e s eae e e e eaeen
11.3 MEMOTY PIOPEILIESveuveuieeieuieiienienteetiete st et et ete st e e et ente st e neeseeeeesneenneeneas
T1.3.1 SEMANTICS ..uvieiveieeiieiieiiieeriecieeeiteereesteeeaeesteeeebeesteeetbeebeesaseesbeesaneeanas
11.3.2 EXAMPIE .ooieieiieiieiiciieieeteeetee ettt neeneas

Register flle COMPONENLccvieciiiiieiiieieeie ettt saeesebeenaeeeeee s

12.1 Defining and instantiating register filescccevvrvieniieeiieeriienie e
12.2 SEMANTICS .vviiiviieiiieiieiie et eette et este e st e esteettesbeestaeesseesseassseesseessseesseessseeseenseeas
12.3 RegiSter file PrOPErtiesecveeieriieierieeierieseeieeteeie st ete sttt eeeseeese e ennesneas
12.3.1 SEMANTICS ..evieiieieieieieiei ettt sttt ettt eb e eae et sb e
12.3.2 EXAMPIE .ooovieiiciieiiciieiecteee ettt e enas

Address map COMPONENL..........ccveruierrierierriesieerieesteesaeeseessreeseesseesseesseesssesssesssees

13,1 INEPOAUCHIONeeiiiieiieie ettt ettt ettt et eebe e saeebe e sbeeasaeaeaas
13.2 Defining and instantiating address mMaps.........ccocceveverereeieniecienie e
13.3 SEMANTICS 1.uvieviieiiieiieiie et eette et et e st e et e et e ebeestaeeabeesseeesseesseessseeseessseenseensseas
13.4 Address mMap PrOPEITICS.......eecverrierierreereeriertestesteestesseessesseeseeseessesseesseseessessees
13,41 SEMANTICS ..eoviriiriitiieieieietet ettt sttt ettt eae bbb ees
13.4.2 EXAMPIE .oooiieeiiieiieiieeiecite ettt et et
13.5 Defining bridges or multiple view address maps........cccecveverveerereenenveenennns
13.5.1 SEMANTICS ...veevveieeiieiieiieetieceeete et e s teeteeseeeebeesteessbeesseeeaseessaessseenns
13.5.2 EXAMPIE .eooieiieieiieieeeee ettt ennas

VErifICation COMSIIUCTSuvviiiiiiiieiie ettt ere e e et eenaeeeenaeeeenreeeennees

141 HDL Pathi..c.coiiiieiieeeeee ettt
14.1.1 Assigning HDL pathcccoooiiiiiiniiiieeee e
14.1.2 EXAMPIES .oeeeeieiieiiieiieie ettt e

14.2 CONSIAINES. c..ceetiteieteeeiteieeie ettt ettt eb ettt ettt ettt sbeebe e
14.2.1 DeScribing CONSLIAINLSccvveerveereeeriierieenieeieeieeneesreesreesveenseesneesnnes

Copyright © 2015 - 2017 Accellera. All rights reserved.

October 16, 2017

This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

October 16, 2017 SystemRDL 2.0/ D9

14.2.2 CONStraint COMPONECILcocuiruieitertierteetieteeteeteeneeneteeesteeeesseeeesteensesseensesseensesseesesas 84

| T 5 111) (<SPPSR 85

15. USEr-AefiNed PrOPEILICS.eivieeiierieiiitieeierteetterteste et e bt et e eteesaeeteessesseessesseessesseeseessesseessesseessensenssessenses 87

15.1 Defining user-defined ProPerties.cvveruerierieririereereetieeesteseesteseersesreeseeseeseeseessesssesseens 87

I5. 1.1 S@MANTICS .eeeutiiiieiietieie ettt ettt ettt ettt et sb e et e b e e sb e st s b e e ebeenteeseeneeeaie 88

LT B 2 < 111) (<SSP 88

15.2 Assigning (and binding) user-defined properties..........cceciriereriererieriesieieeeeieeeeve e e 88

I5.2.1 SEIMANTICS ..evitiiiiiieiieiiei ettt sttt ettt ettt eb e sb et s b st et e s e s e st ebeebeabesbeebenbennens 89

15.2.2 EXAMPIES .eneeiiiiiiieiiee ettt sttt s h e bt nee e 89

16. PreprOCESSOT QITECLIVESeeutieiiitieiiete ettt ettt ettt et ea et et et b et e e bt et eese et e ebeenteeaeeneeeeie 91

16.1 Embedded Perl preproCesSSingveiirierierieieriieiieieeieeieeee e seeeee st seeseeete et eneense e enneens 91

16.1.1 SEMANTICS ...evitintiiiieiieiieieet ettt ettt ettt sb e sttt sttt b sttt et e sbesbe et enbenaens 91

16.1.2 EXAMPIE .oooviiiiiiiicieciieeeett ettt ettt et st e a e st b e s te e ta et e teenbeerae b ens 91

16.2 Verilog-Style PIePIOCESSOLeeutieiieieeeieieetieeteetesteeee st e e ste e e bt eteseeen e steeneeeseeneeeneeneeeneensesnean 91

16.2.1 Verilog-style preprocessor dir€CtiVESc.coeveeerererineneneniereieeeeneneniesrenseneens 92

16.2.2 Limitations on nested file iNCIUSIONcccevvirerieirininininerecce e 92

17. Advanced topics in SYStEMRDL..........cccoiiiiiiiiieiectcieeiee ettt e e se et e seessenseens 93

17.1 Application of SIZNALS fOT TESETcc.uiiiuiiiieiiieiiee ettt ae e sveesreebeeneeeens 93

17.2 Understanding hierarchical interrupts in SystemRDLccccoooiiiiiiiiiiiiiecee e 95

17.2.1 Example structure and PerspectiVeccccoerereerirererinreniereniereeteeeeeeneniessenseneens 96

17.2.2 Code SNIPPEE 1 oottt ettt ettt e a e ebesee e s e s ssebeessenseessenseens 97

17.2.3 COAE SMIPPEE 2 ooeeieiieeieeiie et ete et e ste et e ste et e stte s beesseeesseessseenseenseesnseenseessseeseesssen 97

17.2.4 COde SMIPPEE 3 ooviieiiieeieeiie ettt et e ste et et e et e et e s beesseeesteessaeenseensaesnseenseessseenseensses 98

17.2.5 Code SNIPPEL 4 ...eeeeieeieie ettt ettt ettt ettt ettt ettt ettt e e sttt eneeneenean 98

17.2.6 COd@ SNIPPEE S vttt ettt ettt st sttt eb bt sbe bbb naens 99

17.2.7 COdE SNIPPEL 6 ..ottt ettt ete sttt te et e sseesseeseesesaeessessnessesssensansnens 100

17.2.8 COAE SMUPPEE 7 oooeveeeieeieeiieeteeieesteesteeteesteeeteesteessbeesseessbeeseesseesnseesssessseesssennseenses 100

17.2.9 Code SNIPPEL 8 ..ottt ettt sttt ettt r e eeeenes 101

17.2.10 Code SNIPPEL D ...eeieeeeiee ettt ettt sttt st sa et n e ene s 102

17.2.11 Code SNIPPEE 10 ..vieeieiieieieeieie ettt sttt ettt et eae st ensesnaensesseensannnens 103

17.2.12 Code SNIPPEE L1 oovieiiiiieiieiieieie sttt sttt b e saesreesbessaesbesesensansnens 104

17.3 Understanding bit ordering and byte ordering in SystemRDLcc.coceciniiiiiniininenene. 104

17.3.1 BIt OTAETING ..veoueieieieiieiesie ettt ettt ettt e ee et te s st et e eneenteeseeneeeneenes 105

17.3.2 BYte OFAEIING ..cuveivieiieiieiieeiieiesie et ste et e et e ettt et e see et e seeeesaeeneesneeaesseensesneens 106

Annex A (informative) BiblIOGIaphyccccoeiiiiiriiiiieiieieeeee et 107

Annex B (NOTMALIVE) GIAMIMNATeeieiieiieiieieteeee e etesteeaesseesesseenteeseesseeseessesseesseessessesssessesssensenns 109

Annex C (informative) Backward compatibilitycccovievierieciiniieiicieieee e 115

Annex D (normative) ReESEIVed WOTdS......ccvieiuieiiiiiiieciie ettt ettt s e e e seaeebeesaaeeneas 119

Annex E (NOTMAtIVE) ACCESS MOAECS....ccuvieitiieiieerieiieeteeieesteesteesbeesteesebeebeesbeesseessseeseessseeseessseenses 121

Annex F (informative) Formatting teXt StrINESccvervieeverieeieiereesieeeieie e eteereesaeseessesaessesnesseenseseens 129

Annex G (informative) Component-property relationShipscc.eeveercieeciienieeneerieeieereeee e 133
X Copyright © 2015 - 2017 Accellera. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Public Review Specification October 16, 2017

SystemRDL v2.0: A Register
Description Language Specification

1. Overview

This clause explains the scope and purpose of this standard, describes the key features, details the
conventions used, and summarizes its contents.

The formal syntax of SystemRDL is described using Backus-Naur Form (BNF), which is summarized in
Annex B. The rest of this Standard is intended to be consistent with the SystemRDL grammar. If any
discrepancies between the two occur, the grammar in Annex B shall take precedence.

1.1 Scope

SystemRDL is a language for the design and delivery of intellectual property (IP) products used in designs.
SystemRDL semantics supports the entire life-cycle of registers from specification, model generation, and
design verification to maintenance and documentation. Registers are not just limited to traditional
configuration registers, but can also refer to register arrays and memories.

The intent of this standard is to define SystemRDL accurately. Its primary audience are implementers of
tools supporting the language and users of the language. The focus is on defining the valid language
constructs, their meanings and implications for the hardware and software that is specified or configured,
how compliant tools are required to behave, and how to use the language.

1.2 Purpose

SystemRDL is designed to increase productivity, quality, and reuse during the design and development of
complex digital systems. It can be used to share IP within and between groups, companies, and consortiums.
This is accomplished by specifying a single source for the register description from which all views can be
automatically generated, which ensures consistency between multiple views. A view is any output generated
from the SystemRDL description, e.g., RTL code or documentation.

1.3 Motivation

SystemRDL was created to minimize problems encountered in describing and managing registers. Typically
in a traditional environment the system architect or hardware designer creates a functional specification of
the registers in a design. This functional specification is most often text and lacks any formal syntactic or

Copyright © 2015 - 2017 Accellera. All rights reserved. 1
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

October 16, 2017 SystemRDL 2.0/ D9

semantic rules. This specification is then used by other members of the team including software, hardware,
and design verification. Each of these parties uses the specification to create representations of the data in
the languages which they use in their aspect of the chip development process. These languages typically
include Verilog, VHDL, C, C++, Vera, e, and SystemVerilog. Once the engineering team has an
implementation in a HDL and some structures for design verification, then design verification and software
development can begin.

During these verification and validation processes, bugs are often encountered which require the original
register specification to change. When these changes occur, all the downstream views of this data have to be
updated accordingly. This process is typically repeated numerous times during chip development. In
addition to the normal debug cycle, there are two additional aspects that can cause changes to the register
specification. First, marketing requirements can change, which require changes to a register’s specification.
Second, physical aspects, such as area and timing constraints can drive changes to the register’s
specification. There are clearly a number of challenges with this approach:

a) The same information is being replicated in many locations by many individuals.
b) Propagating the changes to downstream customers is tedious, time-consuming, and error-prone.

¢) Documentation updates are often postponed until late in the development cycle due to pressures to
complete other more critical engineering items at hand.

These challenges often result in a low-quality product and wasted time due to having incompatible register
views. SystemRDL was designed to eliminate these problems by defining a rich language that can formally
describe register specifications. Through application of SystemRDL and a SystemRDL compiler, users can

save time and eliminate errors by using a single source of specification and automatically generating any
needed downstream views.

1.4 Backward compatibility
One of the main goals for this update to the SystemRDL specification was to maintain backward
compatibility to SystemRDL 1.0. In some cases, however, this was not possible. Annex C shows the known

areas of incompatibility in advancing the SystemRDL specification from the SystemRDL1.0 to SystemRDL
2.0 versions.

1.5 Conventions used
The conventions used throughout the document are included here.
1.5.1 Visual cues (meta-syntax)

The meta-syntax for the description of the syntax rules uses the conventions shown in Table 1.

Table 1—Document conventions

Visual cue Represents

bold The bold font is used to indicate key terms, text that shall be typed exactly as it appears.
For example, in the following property definition, the keyword “default” and special char-
acter “:” (and optionally “=") shall be typed as they appear:

default property_name [= value];

italic The italic font in running text represents user-defined variables. For example, a property
name needs to be specified in the following line (after the “default” key term):

default property_name [= value];

2 Copyright © 2015 - 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Public Review Specification October 16, 2017

Table 1—Document conventions (Continued)

Visual cue Represents

courier The courier font in running text indicates SystemRDL or HDL code. For example, the
following line indicates SystemRDL code:

field myField {}; // defines a field type named “myField”

plain text The normal or plain text font in the BNF indicates syntactic categories (see Annex B).
[] square brackets Square brackets indicate optional parameters. For example, the value assignment is

optional in the following line:
default property_name [= value];

{ } curly braces Curly braces ({ }) indicate items that can be repeated zero or more times. For example,
the following shows one or more universal properties can be specified for this command:

mnemonic_name = value [{{universal_property;}*}];

* asterisk An asterisk (*) signifies that parameter can be repeated. For example, the following line
means multiple properties can be specified for this command:

field {[property;]*} name = unsizedNumeric;

| separator bar The separator bar (]) character indicates alternative choices. For example, the following

line shows the “in” or “out” key terms are possible values for the “-direction” parameter:

-direction <in | out>

1.5.2 Notational conventions

The terms “required”, “shall”, “shall not”, “should”, “should not”, “recommended”, “may”, and “optional”
in this document are to be interpreted as described in the IETF Best Practices Document 14, RFC 21 19.!

1.5.3 Examples

Any examples shown in this Standard are for information only and are only intended to illustrate the use of
SystemRDL.

1.6 Use of color in this standard

This standard uses a minimal amount of color to enhance readability. The coloring is not essential and does
not affect the accuracy of this standard when viewed in pure black and white. The places where color is used
are the following:

— Cross references that are hyperlinked to other portions of this standard are shown in underlined-blue
text (hyperlinking works when this standard is viewed interactively as a PDF file).

— Syntactic keywords and tokens in the formal language definitions are shown in boldface-red text
when initially defined.

1.7 Contents of this standard

The organization of the remainder of this standard is as follows:

nformation on references can be found in Clause 2.

Copyright © 2015 - 2017 Accellera. All rights reserved. 3
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

October 16, 2017 SystemRDL 2.0/ D9

Clause 2 provides references to other applicable standards that are assumed or required for this stan-
dard.

Clause 3 defines terms and acronyms used throughout the different specifications contained in this
standard.

Clause 4 defines the lexical conventions used in SystemRDL.
Clause 5 highlights the general concepts, rules, and properties in SystemRDL.
Clause 6 defines the SystemRDL data types.

Clause 7 describes how expressions are used in SystemRDL.
Clause 8 describes how signals are used in SystemRDL.
Clause 9 defines the field components.

Clause 10 defines the register components.

Clause 11 defines the memory components.

Clause 12 defines the register file components.

Clause 13 defines the address map components.

Clause 14 specifies the verification constructs.

Clause 15 specifies the user-defined properties.

Clause 16 defines the preprocessor directives.

Clause 17 describes advanced uses of SystemRDL.

Annexes. Following Clause 17 are a series of annexes.

Copyright © 2015 - 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Public Review Specification October 16, 2017

2. References

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments or corrigenda) applies.

IEEE Std 1364™, IEEE Standard for Verilog Hardware Description Language.z’ 3

IEEE Std 1685™, IEEE Standard for IP-XACT, Standard Structure for Packaging, Integrating, and Reusing
IP within Tool Flows.

IEEE Std 1800, IEEE Standard for SystemVerilog Unified Hardware Design, Specification and Verifica-
tion Language.

IEEE Std 1800.2™, IEEE Standard for Universal Verification Methodology Language Reference Manual.
IETF Best Practices Document 14, RFC 2119.

The Apache ASP Embedding Syntax is available from the Apache web site:
http://www.apache-asp.org/syntax.html.

The HTML 4.01 standard syntax is available from the W3 web site:
http://www.w3.org/TR/html401/.

The MDS5 Message-Digest Algorithm is available from the IETF web site:
https://tools.ietf.org/html/rfc1321.

The Perl programming language, Version 5, is available from the Perl web site:
http://www.perl.org/.

The Unicode Standard, Version 9.0.0, is available from The Unicode Consortium web site:
http://www.unicode.org/versions/Unicode9.0.0/.

2The IEEE standards or products referred to in this clause are trademarks of the Institute of Electrical and Electronics Engineers, Inc.

3IEEE publications are available from the Institute of Electrical and Electronics Engineers, Inc., 445 Hoes Lane, Piscataway, NJ 08854,
USA (http://standards.ieee.org/).

Copyright © 2015 - 2017 Accellera. All rights reserved. 5
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

October 16, 2017

SystemRDL 2.0/ D9

Copyright © 2015 - 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Public Review Specification October 16, 2017

3. Definitions, acronyms, and abbreviations

For the purposes of this document, the following terms and definitions apply. The Authoritative Dictionary
of IEEE Standards Terms [B1]* should be referenced for terms not defined in this clause.

3.1 Definitions

address map: Defines the organization of the registers, register files, memories, and address maps into a
software addressable space. Address maps can be organized hierarchically.

byte order: The ordering of the bytes from left to right or right to left or from most significant byte to least
significant byte or least significant byte to most significant byte. This is often referred to as endianness. See

also Clause 17.

bit order: The ordering of the bits from left to right or right to left or from most significant bit to least sig-
nificant bit or least significant bit to most significant bit. See also Clause 17.

component: A basic building block in SystemRDL that acts as a container for information. Similar to a
struct or class in programming languages.

constraint: An assertion made for verification purposes that is evaluated at the runtime of the design.
element: An instantiation of any SystemRDL component type.

enumeration: Used in field encodings and component property encodings. An identifier bound to some bit
value or a list of values describing bit field encoding or component property encoding.

field: The most basic component object. Fields serve as an abstraction of hardware storage elements.

keyword: A predefined, non-escaped identifier (see 4.3) that defines a language construct; keywords cannot
be used as identifiers.

memory: A contiguous array of memory data elements. A data structure within a memory can be specified
with virtual registers or register files.

parameter: A generalized value of a component definition that can be modified for each instance of the
component.

property: A characteristic, attribute, or a trait of a component in SystemRDL. Because they exist in their
own namespace, property names do not conflict with the language and are not restricted as identifiers.

RDLFormatCode: A set of formatting tags which can be used on text strings.
register: A set of one or more fields which are accessible by software at a particular address.
register file: A grouping of registers and other register files. Register files can be organized hierarchically.

reserved words: terms which have a similar effect to keywords; all reserved words are explicitly reserved
for future use.

“The number in brackets correspond to those of the bibliography in Annex A.

Copyright © 2015 - 2017 Accellera. All rights reserved. 7
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

October 16, 2017

signal: A wire used for interconnect or to define additional component inputs and/or outputs.

struct: User-defined structure for use in user-defined properties. See also Clause 15.

3.2 Acronyms and abbreviations

HDL

hardware description language

HTML hypertext markup language

IP

LSB

MSB

RTL

intellectual property
least significant bit
most significant bit

register transfer level

Copyright © 2015 - 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

SystemRDL 2.0/ D9

Public Review Specification October 16, 2017

4. Lexical conventions

This clause describes SystemRDL in terms of lexical conventions. SystemRDL source code is comprised of
a stream of lexical tokens consisting of one or more characters. SystemRDL files shall use the Universal
Coded Character Set, UCS, encoded using UTF-8. UCS code points beyond the ASCII code page are
restricted to comments and character strings. SystemRDL is case-sensitive. SystemRDL identifiers are
limited to ASCII letters, numbers, and the underscore (). The support for UTF-8 is limited to strings to
allow for non-English documentation. SystemRDL compilers shall ignore the byte-order mark.

4.1 White space

White space characters are: space (U+0020), horizontal tab (U+0009), line feed (U+O00A), and carriage
return (U+000D). All white space characters are syntactically insignificant, except in the following cases.

a) Strings—Any number of consecutive white space characters is treated as a single space for purposes
of generating documentation. See 4.5.

b) Single-line comments—A new-line character (line feed, carriage return, or line feed plus carriage
return) terminates a single-line comment. See 4.2.

c¢) Where more than one token is being used and spacing is required to separate the tokens.

4.2 Comments

There are two types of comments in SystemRDL: single-line comments and block comments. Single-line
comments begin with // and are terminated by a new-line character. Block comments begin with /* and are
terminated by the next */. Block comments may span any number of lines; they shall not be nested. Within a
block comment, a single-line comment (//) has no significance.

Examples

// single line comment
/*
Block
comment
// This is part of this Block comment
*/

4.3 Ildentifiers

An identifier assigns a name to a user-defined data type or its instance. There are two types of identifiers:
simple and escaped. Identifiers are case-sensitive. Simple identifiers have a first character that is a letter or
underscore (_) followed by zero or more letters, digits, and underscores. Escaped identifiers begin with \
followed by a simple identifier.

Examples

my_identifier

My_IdENnTiFIEr

X

_y0123

3

\field // This is escaped because it uses a keyword

Copyright © 2015 - 2017 Accellera. All rights reserved. 9
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

50

55

10

15

20

25

30

35

40

45

50

55

October 16, 2017

4.4 Keywords

SystemRDL 2.0/ D9

Keywords are predefined, non-escaped identifiers (see 4.3) that define language constructs. Keywords
cannot be used as identifiers. Escaped keywords are treated as identifiers in SystemRDL. The keywords are

listed in Table 2.
Table 2—SystemRDL keywords

abstract accesstype addressingtype addrmap alias
all bit boolean bothedge compact
component componentwidth constraint default enum
external false field fullalign hw
inside internal level longint mem
na negedge nonsticky number onreadtype
onwritetype posedge property r rclr
ref reg regalign regfile rset
ruser rw rwl signal string
struct SW this true type
unsigned w wl welr woclr
woset wot wr wset wuser
wze WZS wzt

The following also apply.

— Reserved words have a similar effect as keywords; reserved words are explicitly reserved for future

use. See also Annex D.

— The SystemRDL-detailed access modes are defined in Annex E.

— Right-hand side values defined in this standard are keywords. See also Annex G.

— Left-hand side values that are not keywords are properties. See also Annex G.

— Because they exist in their own namespace, property names do not conflict with the language and are
not restricted as identifiers.

4.5 Strings

A string is a sequence of characters enclosed by double quotes. The escape sequence \”” can be used to
include a double quote within a string. To maintain consistency between all generated documentation
formats, one or more consecutive white space characters within a string shall be converted to a single space
for purposes of documentation generation. SystemRDL also has a set of formatting tags which can be used
on text strings, see Annex F.

Examples

“This is a string”

“This is also
a string!”

“This third string contains a \”double quote\““

10

Copyright © 2015 - 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Public Review Specification October 16, 2017

4.6 Numbers

There are several number formats in SystemRDL. All numbers in SystemRDL are unsigned.

a)
b)

¢)

d)

Simple decimal: A sequence of decimal digits 0, ..., 9.

Simple hexadecimal: 0x (or 0X) followed by a sequence of decimal digits or characters a through f
(upper- or lower-case).

Verilog-style decimal: Begins with a width specifying the number of binary bits (a positive decimal
number) followed by a single quote ('), followed by a d or D for decimal, and then the number itself,
represented as a sequence of digits 0 through 9.

Verilog-style hexadecimal: Begins with a width specifying the number of binary bits (a positive
decimal number) followed by a single quote ('), followed by an h or H for hexadecimal), and then
the number itself, represented as a sequence of digits 0 through 9 or characters a through f (upper- or
lower-case).

Verilog-style binary: Begins with a width specifying the number of binary bits (a positive decimal
number) followed by a single quote ('), followed by a b or B for binary, and then the number itself,
represented as a sequence of the digits 0 and 1.

The numeric portion of any number may contain multiple underscores (_) at any position, except the width
and first position, which are ignored in the computation of the associated numeric value. Additionally the
width of a Verilog number needs to be specified. Ambiguous width Verilog-style numbers, e.g., >hFF, are
not supported.

It shall be an error if the value of a Verilog-style number does not fit within the specified bit-width.

Examples
40 // Simple decimal example
0x45 // Simple hexadecimal example
47d1 // Verilog style decimal example (4 bits)

3’b101 // Verilog style binary example (3 bits)
32°hDE_AD_BE_EF // Verilog style with _’s
32”hdeadbeef // Same as above

7°h7f // Verilog style hex example (7 bits)

Copyright © 2015 - 2017 Accellera. All rights reserved. 11
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

October 16, 2017

12

SystemRDL 2.0/ D9

Copyright © 2015 - 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Public Review Specification October 16, 2017

5. General concepts, rules, and properties

The concepts, rules, and properties described in this clause are common to all component types and do not
determine how a component is implemented in a design.

5.1 Key concepts and general rules

This subclause describes the key concepts of SystemRDL and documents general rules about how to use the
language to define hardware specifications. Subsequent clauses will refine these generic rules for each
component type.

A component in SystemRDL is the basic building block or a container which contains properties that further
describe the component’s behavior. There are several structural components in SystemRDL: field, reg,
mem, regfile, and addrmap. Additionally, there are several non-structural components: signal, enum, and
constraint.

Components can be defined in any order, as long as each component is defined before it is instantiated. All
structural components (and signals) need to be instantiated before being generated.

5.1.1 Defining components

To define components in SystemRDL, each definition statement shall begin with the keyword corresponding
to the component object being defined (as listed in Table 3). All components need to be defined before they
can be instantiated (see 5.1.2).

Table 3—Component types

Type Keyword
Field field
Register reg
Register file regfile
Address map addrmap
Signal signal
Enumeration enum
Memory mem
Constraint constraint

SystemRDL components can be defined in two ways: definitively or anonymously.

— Definitive defines a named component type, which is instantiated in a separate statement. The defin-
itive definition is suitable for reuse.

— Anonymous defines an unnamed component type, which is instantiated in the same statement (see
also 5.1.2). The anonymous definition is suitable for components that are used once.

A definitive definition of a component appears as follows.

component new_component_name [#(parameter_definition [, parameter_definition]*)]
{[component_body]} [instance_element [, instance_element]*];

An anonymous definition (and instantiation) of a component appears as follows.

Copyright © 2015 - 2017 Accellera. All rights reserved. 13
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

October 16, 2017 SystemRDL 2.0/ D9

component {{component_body]} instance_element [, instance_element]*;
a) In both cases, component is one of the keywords specified in Table 3.

b) For a definitively defined component, new_component_name is the user-specified name for the
component.

¢) For a definitively defined component, parameter_definition is the user-specified parameter as
defined in 5.1.1.1.

d) For a anonymously defined component, instance_element is the description of the instantiation attri-
butes, as defined in 5.1.2 a 3.

e) The component_body is comprised of zero or more of the following.
1) Default property assignments
2) Property assignments
3) Component instantiations
4) Nested component definitions
5) Constraint definitions
6) Struct definitions
f) The first instance name of an anonymous definition is also used as the component type name.

g) The stride (+=), alignment (%), and offset (@) of anonymous instances are the same as the defini-
tive instances in 5.1.2.3.

The following code fragment shows a simple definitive field component definition for myField.
field myField {};

The following code fragment shows a simple anonymous field component definition for myField.
field {} myField;

5.1.1.1 Defining component parameters

All definitive component types, except enumerations and constraints, may be parametrized using Verilog-
style parameters. To define Verilog-style parameters in SystemRDL, parameter definitions shall be specified
after the component's name. parameter_definition is defined as follows.

parameter_type parameter_name [= parameter_value]

where
a) parameter_type is a type reference taken from the list of SystemRDL types (see Table 7).
b) parameter_name is a user-specified parameter name.
¢) parameter_value is an expression whose resolved type should be consistent with parameter_type.

5.1.1.2 Semantics

a) If a parameter definition is assigned a parameter value, that value is the default value for the param-
eter.

b) If aparameter is not specified with a default value, every instance of the component needs to provide
a value for the parameter.

¢) The name of the parameter may be used elsewhere within the remainder of the component definition
to represent its value.

d) Nested component definitions do not inherit from their parent’s parameters.

14 Copyright © 2015 - 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Public Review Specification October 16, 2017

e) Component instance references shall not be used as parameter values (either directly or as part of an
aggregate type).

5.1.1.3 Inserting parameterized types in the type namespace

Each declared component’s type name is added to the type namespace of the enclosing scope of component
declaration. In addition, instances of parameterized components which have parameter overrides create a
new type name based on the parameterized component type name rules in the type namespace of the
component declaration enclosing scope. Subsequent instances of parameterized components with the same
resolved parameter values matching those of a component instance existing type name in the type
namespace of component declaration enclosing shall reuse the existing type name without adding a new type
name.

It shall be an error if a parameterized component instance has a type name which matches an existing type
name that corresponds to a parameterized component instance with different resolved parameter values or
matches any other type name.

5.1.1.4 Generated type naming rules

Most generation targets for elaborated SystemRDL platforms require some means of uniquely identifying
instance types. To provide a minimum level of compatibility between tool outputs, defining the type name
generation process is necessary.

The following steps shall be used to construct the elaborated type names of instance with parameter
arguments.

a) If the instance’s defined arguments match the type’s default parameter values, the instance’s type
name shall be used as is.

b) Ifthe instance’s type is parameterized and all the defined arguments match the type’s default param-
eter values, the instance’s type name shall be used as is.

¢) In all other cases, the instance’s generated type name shall be constructed by appending to the
instance’s type name and, for each argument its name, followed by its normalized value, separated
by a single underscore (_). The sequences shall also be joined using single underscores.

type_name{(_param_name_normalized_value)}*

Normalized values shall be derived from the argument’s type and from its resolved expression’s
value as follows.

1) Scalar values shall be rendered using their hexadecimal representation.
2) Boolean values shall be rendered using either t for true or T for false.

3) String values shall be rendered using the first eight characters of their md5 (Message-Digest
Algorithm) checksum.

4) Enum values shall be rendered using their enumerator literal.
5) Arrays shall be rendered by:
i) generating the normalized values of its elements,
ii) joining these elements with single underscores (_) into a single character sequence, and
iii) using the first eight characters of the md5 checksum of this character sequence
... which can be semi-formalized as:
subsequence(md5(join(normalized_values, ' '), 0, 8)
6) Structs shall be rendered by:

Copyright © 2015 - 2017 Accellera. All rights reserved. 15
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

October 16, 2017

SystemRDL 2.0/ D9

generating the normalized value of each member,

joining each member’s name with its normalized value, separated by a single underscore
Q)

joining the member character sequences with single underscores,

using the first eight characters of the md5 checksum of this character sequence
... which can be semi-formalized as:

member_normalization = concat(member_name, ' ", normalized_member_value)
subsequence(md5(join(apply(struct_members, member_normalization)), 0, 8)

5.1.2 Instantiating components

In a similar fashion to defining components, SystemRDL components can be instantiated in two ways.

a) A definitively defined component is instantiated in a separate statement, as follows.

type_name [#(parameter_instance [, parameter_instance]*)]
instance_element [, instance_element]* ;

where

1) type_name is the user-specified name for the component.

2) parameter_instance is specified as

.param_name(param_val)

where param_name is the name of the parameter defined with the component and param_val is
an expression whose result is the value of the parameter for this instance.

3) instance_element is specified as follows.

V)

vi)

instance_name [{[constant_expression]}* | [constant_expression : constant_expression]]
[addr_alloc]

instance_name is the user-specified name for instantiation of the component.
constant_expression is an expression that resolves to a longint unsigned.

[constant_expression] specifies the size of the instantiated component array (optionally
multidimensional) if the component is an addrmap, a regfile, a reg, or a mem; or the
instantiated component’s bit width if the component is a field or a signal.

[constant_expression : constant_expression] specifies the bit boundaries of the instanti-
ated component. This form of instantiation can only be used for field or signal compo-
nents (see Clause 10 and Clause 8).

addr_alloc is an address allocation operator (see 5.1.2.3). These operators shall only be
used when instantiating addrmap, regfile, reg, or mem components.

When using multiple-dimensions, the last subscript increments the fastest.

b) An anonymously defined component is instantiated in the statement that defines it (see also 5.1.1).

Components need to be defined before they can be instantiated. In some cases, the order of instantiation
impacts the structural implementation, e.g., for the assigning of bit positions of fields in registers (see
Clause 6 — Clause 15).

The following code fragment shows a simple scalar field component instantiation.

field {} myField; // single bit field instance named “myField”

The following code fragment shows a simple array field component instantiation.

field {} myField[8]; // 8 bit field instance named “myField”

16

Copyright © 2015 - 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Public Review Specification October 16, 2017

5.1.2.1 Specifying instance parameters

SystemRDL components defined with parameters (see 5.1.1.1) may have those parameters overridden or
defined during non-anonymous instantiation.

Parameters are assigned by name, which explicitly links the parameter name and its new value. The name of
the parameter shall be the name specified in the instantiated component. It is not necessary to assign values
to all of the parameters within a component, only parameters that are assigned new values need to be
specified. Parameter values are assigned using Verilog-style syntax, as defined in 5.1.2 a 2.

5.1.2.1.1 Parameter instance example

reg myReg #(longint unsigned SIZE = 32, boolean SHARED = true) {
regwidth = SIZE;
shared = SHARED;
field {} data[SIZE - 1];
}:
addrmap myAmap {
myReg reg32;
myReg reg32_arr[8]:
myReg #(.SIZE(16)) regl6;
myReg #(.S1ZE(8), -SHARED(false)) reg8;
}:

5.1.2.1.2 Parameter dependence

a) A parameter (e.g., memory_size) can be defined with an expression containing another parameter
(e.g.,word_size).
b) Overriding a parameter effectively replaces the parameter definition with the new expression.

c¢) Parameters are evaluated following the order in which they are defined in the component definition.
Because memory_size depends on the value of word_size, a modification of word_size
changes the value of memory_size.

For example, in the following parameter declaration, an update of word_size in an instantiation
statement for the component that defined these parameters automatically updates memory_size.
If memory_size is defined in an instantiation statement, however, it will take on that value,
regardless of the value of word_size.

mem fixed_mem #(longint unsigned word_size = 32,
longint unsigned memory_size = word_size * 4096) {
mementries = memory_size / word_size ;
memwidth = word_size ;

-
5.1.2.2 Instance address allocation
The offset of an instance within an object is always relative to its parent object. If an instance is not
explicitly assigned an address allocation operator (see Table 4), the compiler assigns the address according
to the alignment (see 5.1.2.2.1) and addressing mode (see 5.1.2.2.2). The address of an instance from the
top level addrmap is calculated by adding the instance offset and the offset of all its parent objects.
5.1.2.2.1 Instance alignment
The alignment property defines the byte value of which the container’s instance addresses shall be a

multiple. This property can be set for addrmaps (see Table 26) and regfiles (see Table 25), and its value

Copyright © 2015 - 2017 Accellera. All rights reserved. 17
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

October 16, 2017 SystemRDL 2.0/ D9

shall be a power of two (1, 2, 4, etc.). Its value is inherited by all of the container’s non-addrmap children.
By default, instantiated objects shall be aligned to a multiple of their width (e.g., the address of a 64-bit
register is aligned to the next 8-byte boundary).

5.1.2.2.2 Addressing modes

There are three addressing modes defined in SystemRDL: compact, regalign (the default), and fullalign.
These addressing modes are set using the addressing address map property (see Table 26).

a) compact

Specifies the components are packed tightly together while still being aligned to the accesswidth
parameter (see Table 23).

Example 1
Sets accesswidth=32.
addrmap some_map {

accesswidth=32;
addressing=compact;

reg { field {} a; } a; // Address 0O
reg { regwidth=64; field {} a; } b; // Address 4
reg { field {} a; } c[20]; // Address OxC - Element O

// Address 0x10 - Element 1
// Address 0x14 - Element 2

}:

Example 2

Sets accesswidth=64.
addrmap some_map {

accesswidth=64;
addressing=compact;

reg { field {} a; } a; // Address 0O
reg { regwidth=64; field {} a; } b; // Address 8
reg { field {} a; } c[20]; // Address 0x10 - Element O

// Address 0x14 - Element 1
// Address 0x18 - Element 2

}:
b) regalign
Specifies the components are packed so each component’s start address is a multiple of its size (in
bytes). Array elements are aligned according to the individual element’s size (this results in no gaps
between the array elements). This generally results in simpler address decode logic.

Example 3

Uses the default accesswidth of 32.

addrmap some_map {
addressing = regalign;

reg { field {} a; } a; // Address 0O
reg { regwidth=64; field {} a; } b; // Address 8

18 Copyright © 2015 - 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Public Review Specification October 16, 2017

reg { field {} a; } c[20]; // Address 0x10
// Address 0x14 - Element 1
// Address 0x18 - Element 2
};
c) fullalign

The assigning of addresses is similar regalign, except for arrays. The alignment value for the first
element in an array is the size in bytes of the whole array (i.e., the size of an array element multiplied
by the number of elements), rounded up to nearest power of two. The second and subsequent ele-
ments are aligned according to their individual size (so there are no gaps between the array ele-
ments).

Example 4
Uses the default accesswidth of 32.

addrmap some_map {
addressing = fullalign;

reg { field {} a; } a; // Address 0
reg { regwidth=64; field {} a; } b; // Address 8
reg { field {} a; } c[20]; // Address 0x80 - Element O

// Address 0x84 - Element 1
// Address 0x88 - Element 2
};

5.1.2.3 Address allocation operators

When instantiating regs, regfiles, mems, or addrmaps, the address may be assigned using one of
the address allocation (addr_al loc) operators in Table 4.

Table 4—Address allocation operators

Property Implementation/Application

(@ expression Specifies a specific address for the component instance. This expression resolves
toa longint unsigned.

+= expression Specifies the address stride when instantiating an array of components (controls the
spacing of the components). The address stride is relative to the previous instance’s
address. This expression resolves to a longint unsigned.

%= expression Specifies the alignment of the next address when instantiating a component (con-
trols the alignment of the components). The initial address alignment is relative to
the previous instance’s address. This expression resolves to a longint
unsigned.

5.1.2.4 Semantics

a) Addresses in SystemRDL are always byte addresses.

b) Addresses are assigned in incrementing order.

c) The operator %= is a more localized version of the alignment property (see Table 25).
d) Onlya longint unsigned may be used for address specification.

e) The += operator is only used when instantiating arrayed addrmap, regfile, reg, or mem compo-
nents.

f) The @ and %= operators are mutually exclusive per instance.

Copyright © 2015 - 2017 Accellera. All rights reserved. 19
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

October 16, 2017

SystemRDL 2.0/ D9

g) The alignment of an array instance specifies the alignment of the start of the array and the increment
specifies the offset from one array element to the next array element.

5.1.2.5 Examples

The following set of examples demonstrate the usage of the operators defined in Table 4. The final addresses
(as indicated in the comments in the example) are valid for an addressing mode called regalign, which is the
default addressing mode (see Clause 13), with the default regwidth=32. The regfile component is defined in

Clause 12.
Example 1

Using the @ operator.

addrmap top {

regfile example {
reg some_reg { field {} a; };

some_reg
some_reg
some_reg
some_reg
}:
}:
Example 2

Using the += operator.

addrmap top {

a @0xO0;
b @0x4;
c; // Implies address of 8
// Address OxC is not implemented or specified
d @0x10;

regfile example {
reg some_reg { field {} a; }:
some_reg a[10]; // So these will consume 40 bytes

// Address 0,4,8,C....

some_reg b[10] @0x100 += 0x10; // These consume 160-12 bytes of space

¥
¥

Example 3
Using the %= operator.

addrmap top {

// Address 0x100 to 0x103, 0x110 to Ox113,....

regfile example {
reg some_reg { field {} a; };
some_reg a[10]; // So these will consume 40 bytes

// Address 0,4,8,C....

some_reg b[10] @0x100 += 0x10; // These consume 160-12 bytes of space

// Address 0x100 to 0x103, 0x110 to O0x113,....

some_reg ¢ %=0x80; // This means ((address % 0x80) == 0))

20

// So this would imply an address of 0x180 since
// that is the first address satisfying address>=0x134
// and ((address % 0x80) == 0)

Copyright © 2015 - 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Public Review Specification October 16, 2017

5.1.3 Specifying component properties

Each property is associated with at least one data type defined in Clause 6 (and summarized in Table 7).
Property types include primitive types and aggregate types.

5.1.3.1 Property assignment

Each component type has its own set of pre-defined properties. Properties may be assigned in any order.
User-defined properties can also be specified to add additional properties to a component that are not pre-
defined by the SystemRDL specification (see Clause 15). A specific property shall only be set once per
scope (see 5.1.4). All component property assignments are optional.

A property assignment appears as follows.
property_name [= expression];

The descriptions for the data types of expression results that are legal for each property_name (and
exceptions to those rules) are explained in the corresponding clause for each individual component (see
Clause 8 — Clause 14).

When expression is not specified, it is presumed the property_name is of type boolean and the default value
is set to true.

Example

field myField {

rclr; // Bool property assign, set implicitly to true
woset = false; // Bool property assign, set explicitly to false
name = “my Field”; // string property assignment

SW = rw; // accesstype property assignment

}:
5.1.3.2 Assigning default values

Default values for a given property can be set within the current or any enclosing lexical scope (see 5.1.4).
Any components defined in the same or enclosed lexical scope as the default property assignment shall use
the default values for properties in the component not explicitly assigned in a component definition. A
specific property default value shall only be set once per scope.

A default property assignment appears as follows.
default property_name [= value];

The descriptions for the types of values that are legal for each property_name (and exceptions to those rules)
are explained in the corresponding clause for each individual component (see Clause 8 — Clause 14).

When the value is not specified, the property shall be assigned the boolean value true.
Example

field {} outer_field ;
reg {
default name = “default name”;
field {} f1; // assumes the name “default name” from above
field { name = “new name”; } f2; // name assignment overrides “default name”
outer_Tfield 3 ; // name is undefined, since outer_field is not defined in the

Copyright © 2015 - 2017 Accellera. All rights reserved. 21
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

October 16, 2017 SystemRDL 2.0/ D9

// scope of the default name
} some_reg;

5.1.3.3 Dynamic assignment

Some properties may have their values assigned or overridden on a per-instance basis. When a property is
assigned after the component is instantiated, the assignment itself is referred to as a dynamic assignment.
Properties of a referenced instance shall be accessed via the arrow operator (->).

A dynamic assignment appears as follows.
instance_name -> property _name [= value];

where
a) instance_name is a previously instantiated component (see 5.1.2).

b) When value is not specified, it is presumed the property_name is of type boolean and the value is set
to true.

¢) The dynamically assignable properties for each component type are explained in the corresponding
clause for each individual component (see Clause 8 — Clause 14).

d) In the case where instance_name is an array, the following possible dynamic assignment scenarios
exist.

1) If the component type is field or signal, the fact the component is an array does not matter—the
assignment is treated as if the component were a not an array.

2) If the component type is reg, regfile, mem, or addrmap

i) The user can dynamically assign the property for all elements of the array by eliminating
the square brackets ([]) and the array index from the dynamic assignment.

array_instance_name -> property_name [= value];
ii) The user can dynamically assign the property for an individual index of the array by using
square brackets ([]) and specifying the index to be assigned within the square brackets.

array_instance_name {[index]}* -> property_name [= value];
Example 1
This example assigns a simple scalar.

reg {

field {} f1;

fl->name = “New name for Field 17;
} some_reg;

Example 2
This example assigns an array.

reg {
field {} f1;
fl->name = “New name for Field 17;
} some_reg[8];
some_reg->name = “This value is applied to all elements in the array”;
some_reg[3]->name = “This value is only applied to the 4th item in the
array of 87;

22 Copyright © 2015 - 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Public Review Specification October 16, 2017

5.1.3.4 Property assighment precedence

There are several ways to set values on properties. The precedence for resolving them is (from highest to
lowest priority):

a) dynamic assignment (see 5.1.3.3)

b) property assignment (see 5.1.3.1)

¢) default property assignment (see 5.1.3.2)

d) SystemRDL default value for property type (see Table 7)

Example

reg {
default name ="def name”;

field T_type { name = “other name”; };

field {} f1;

field { name = “property assigned name”; } f2;
f_type f3;

f3->name = “Dynamic Assignment”;
} some_reg;

Results

// Final Values of all fields

// Tl name is “def name”

// 2 name is “property assigned name”
// 3 name is “dynamic assignment”

5.1.4 Scoping and namespaces

A scope defines the conditions in which an identifier may be associated with an entity. SystemRDL is a
statically (or lexically) scoped language.

The body of a component (or struct) definition defines a local scope. A valid SystemRDL description is,
therefore, an aggregation of nested local scopes, ultimately nested into the outermost global (or root) scope.

Each local scope contains two independent namespaces, to which different scoping rules apply:
— Type names (component definitions, enum types, and struct types);
— Element (e.g., reg and Field instantiations; Struct members) names and parameter names.

Identifiers shall be unique within a namespace in a scope. Namespaces are differentiated implicitly by
syntax. There are no namespace operators or limiters.

The root scope contains a third namespace for property names. All property references (standard and user-
defined) shall be resolved by searching this namespace.

Example 1

property foo {
component = field ;
type = string ;
3
reg foo {

field {

Copyright © 2015 - 2017 Accellera. All rights reserved. 23
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

October 16, 2017 SystemRDL 2.0/ D9

foo = "abc" ;
} foo ;
3
foo foo ; // instantiate reg type foo to generate instance called foo
foo.foo -> foo = "xyz" ; // property foo of field foo of reg foo gets value ""xyz"

The root scope shall only contain component type and struct type definitions and signal instantiations.
No other component instantiations shall be allowed in the root scope. The root(s) of an addrmap hierarchy
are those addrmaps that are defined, but not subsequently instantiated.

By definition, a component scope contains component type and struct type definitions, as well as element
references. A struct scope only contains member declarations. All type names shall be unique in the type
namespace and all element names shall be unique within the element namespace. However, there can be a
type and element with the same name in the same scope. Additionally, types shall be defined and elements
declared before they are referenced in the sequence of statements.

Type references are resolved from the local scope up the enclosing lexical scope to the global scope.
a) Elements referenced in the left-hand side of an expression shall be declared in the local scope.

b) Elements referenced in the right-hand side of an expression shall be declared in the local scope or up
in the enclosing lexical scope if the referenced element is a signal.

c) Iftwo types (or elements) in different scopes share the same name, the type (respectively, element)
name from the scope that is lexically closest to the local scope shall take precedence.

Children elements—as elements contained in the local scope of the parent scope’s type—may be referenced
via the dot operator (.).

A element reference appears as follows.
element_name [. child_element_name]*

where
a) element_name is a previously declared element in the current scope (see 5.1.2).
b) the first use of child_element_name shall exist in element_name’s local type scope.

c) for all other child_element_names, any subsequent child_element_name shall exist in the previous
child_element_name’s local type scope.

Element references from an assignment located in a constraint body are resolved from the constraint
body’s enclosing lexical scope, then up the lexical scope. Such an element reference may either be a direct
field reference, or use the dot operator (.) to navigate down the referenced element’s instance hierarchy to
target a Field instance.

Example 2

regfile foo {
reg {
field {} a ;
constraint {
a < Oxc ; // direct field reference
} constl ;
} regA ;
constraint {
regA.a > 0x4 ; // indirect field reference
} const2 ;

24 Copyright © 2015 - 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Public Review Specification October 16, 2017

Dynamic assignments can be layered in SystemRDL from the innermost to the outermost scope; i.c.,
dynamic assignments that are specified at an outer scope override those that are specified at an inner scope.
No more than one assignment of a property per scope is allowed in SystemRDL.

Example 3

regfile foo_rf {
reg some_reg_r {
field {} a[2]=2"b00;// End of field: a
a->reset = 2°b01;// Dynamic Assignment overriding reset val
field {} b[23:16]=8"hFF; // End of field: b
}:

some_reg_r rega;
some_reg_r regb;

rega.a->reset = 2°b10; // This overrides the other dynamic assign
rega.b->reset = 8"h00;
rega.b->reset = 8"h5C; // Error two assigns from the same scope
}; // End addrmap: foo
addrmap bar {
foo_rf foo;
foo.rega.a->reset = 2"bl1l;
// Override the reset value again at the outermost scope
}; // End addrmap: bar

Any reference to an element in the right-hand side of an assignment shall be resolved statically, i.e., by
considering the elements visible from the assignment’s local scope.

Example 4

signal {} my_signal
field my_field {

resetsignal = my_signal ; // will resolve to the signal instance

// declared in the global scope

¥
addrmap top {

signal {} my_signal

reg {

my_field a ; // the field iInstance"s resetsignal will

// still be resolved as the global scope®s my_signal

} reg_a ;

}

5.2 General component properties

This subclause details properties that generally apply to SystemRDL components.

5.2.1 Universal properties

The name and desc properties can be used to add descriptive information to the SystemRDL code. The use
of these properties encourages creating descriptions that help generate rich documentation. All components

have a instance name already specified in SystemRDL; name can provide a more descriptive name and desc
can specify detailed documentation for that component.

Copyright © 2015 - 2017 Accellera. All rights reserved. 25
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

October 16, 2017 SystemRDL 2.0/ D9

Table 5 lists and describes the universal SystemRDL component properties.

Table 5—Universal component properties

Property Implementation/Application Type Dynamic?
name Specifies a more descriptive name (for documentation purposes). string Yes
desc Describes the component’s purpose. string Yes

Indicates whether a property can be assigned dynamically.
5.2.1.1 Semantics

If name is undefined, it is presumed to be the instance name.
5.2.1.2 Example

This example shows usage of the name and desc properties.

reg {
field {
name=""Interface Communication Control";
// IT name is not specified its implied to be ICC
desc="This field is used [...] desired low power state.";
} 1CC[4];
} ICC_REG; // End of Reg: ICC_REG

5.2.2 Structural properties

Table 6 lists and describes the structural component properties.

Table 6—Structural component properties

Property Implementation/Application Type Dynamic?
donttest This testing property indicates the component is not included in struc- booleanor | Yes
tural testing. bit
dontcom- This is testing property indicates the components read data shall be dis- | booleanor | Yes
pare carded and not compared against expected results. bit

Indicates whether a property can be assigned dynamically.
5.2.2.1 Semantics

a) These properties can be applied as a boolean or a bit mask (bit) to a field component. A mask shall
have the same width as the field. Masked bits (bits set to 1) are not tested (donttest) or compared
(dontcompare).

b) They can also be applied to reg, regfile, and addrmap components, but only as a boolean.
c) donttest and dontcompare

1) cannot both be set to true,

2) cannot have one true and the other non-zero, and

3) the bitwise AND of their masks shall be zero (0) for a particular component (i.e., donttest &
dontcompare = 0).

26 Copyright © 2015 - 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Public Review Specification October 16, 2017

5.2.2.2 Example

This example shows usage of the donttest and dontcompare properties.

reg {
field { donttest;} a;
field {} b[8];
field { dontcompare;} c;
b->dontcompare = 8”hF0; // The upper four bits of this 8 bit field will
// not be compared.
} some_reg;

5.3 Content deprecation

The ispresent universal property can be used to configure the activation of SystemRDL component
instances. Setting ispresent to false causes the given component instance to be removed from the final
specification.

5.3.1 Semantics

a)

b)
¢)

d)

2

h)

k),

k)

ispresent is a universal property on all component instances (addrmap, reg, signal, etc.) other than
enums.

The default value of ispresent is true.

Instance names shall be unique within a scope even before the values of ispresent are resolved. This
feature does not enable replacement of instances.

ispresent values may not be dependent on values contained in SystemRDL constructs. No reference
values are allowed. Otherwise, the rules of expressions apply.

Setting ispresent to false removes the instance.
Setting a property on an element that is removed due to ispresent does not constitute an error, e.g., if
an instance belong to a removed addrmap, modifications to the instance are acceptable.

Instance positions are computed presuming all instances are present. Removing an instance can
introduce a hole.

The use of ispresent does not imply any new component definitions. If a component is instantiated
twice, setting ispresent within one of them does not trigger the creation of new hardware.

If a present instance includes references (e.g., signals), the referred objects need to also be present.

If a present instance is an alias register (see 10.5), the primary register needs to also be present. Con-
versely, if a register acting as a primary register is not present, then all the alias registers that refer to
it shall not be present either.

Component instances shall not be empty. Setting ispresent on all children of a parent instance to
false shall be an error.

5.3.2 Examples

Some examples are shown highlighting simple, complex, and corner case usage.

5.3.2.1 Simple example

}

addrmap submap {

reg { field {} a[32] ; } rega, regb, ahb_specific ;

Copyright © 2015 - 2017 Accellera. All rights reserved. 27
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

October 16, 2017 SystemRDL 2.0/ D9

addrmap bridge {
bridge ;
submap ahb ;
submap axi
axi.ahb_specific -> ispresent = false ;

}

5.3.2.2 Complex example

reg some_reg #(boolean RESERVED
ispresent = 'RESERVED ;
field {} a, b, c ;
b -> ispresent = false ;
field { ispresent = false ; } d ;
// the default bitfield layout should be: a[0:0], c[2:2]
¥

false) {

some_reg #(.RESERVED(true)) reserved_reg ;
some_reg partially_reserved_reg ;

some_reg not_reserved_reg ;
not_reserved_reg.b -> ispresent
not_reserved_reg.d -> ispresent

true ;
true ;

5.3.2.3 Corner case

field {} a, b ;

b -> next = a ;

a -> ispresent = false ; // This is an error w.r.t clause (h) "If a present
// instance includes references (e.g., signals), the
// referred objects need to also be present.”

28 Copyright © 2015 - 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Public Review Specification October 16, 2017

6. Data types

6.1 Overview

This section presents all the data primary and aggregate data types used in SystemRDL. While some data
types, such as boolean or onreadtype, are specific to SystemRDL, the data types and its associated type
system are consistent with SystemVerilog semantics as specified in IEEE Std 1800-2012, unless noted
otherwise.

Table 7 summarizes all the data types discussed in this document.

Table 7—Data types

Parameter or
Type struct member Definition Default
type name
boolean boolean true or false. false
string string See 4.5 and 6.2.2. "
bit bit An unsigned integer with the value of O or a Ver- Undefined
ilog-style number, see 4.6 (c -) and 6.2.1.
longint unsized longint unsigned | A 64-bit unsigned long integer, see 4.6 (a and b) Undefined
and 6.2.1.
accesstype accesstype One of rw, wr, r, w, rwl, wl, or na. See 9.4. rw
addressingtype addressingtype One of compact, regalign, or fullalign. See 13.4. regalign
onreadtype onreadtype One of rclr, rset, or ruser. See 9.6. Undefined
onwritetype onwritetype One of woset, woclr, wot, wzs, wzc, wzt, welr, Undefined
wset, or wuser. See 9.6.
precedencetype One of hw or sw. Cannot be used as a parameter or | sw
struct member type. See 9.4.
struct struct reference A reference to a struct. Undefined
array array reference A reference to an array. Empty array
enum enum reference A reference to a user-defined enumeration. Undefined
instance reference | ref A reference to a component instance, component Undefined
instance property, parameter, or struct instance
member.

6.2 Primary data types

A subset of the SystemVerilog data types are used by the SystemRDL Expression Language, namely bit,
longint unsigned, and string (with some changes).

Complex, user-defined, and time data types shall not be supported in SystemRDL. Unknown (X) and high
impedance (Z) values shall not be supported either.

6.2.1 Signed and unsigned data types

All SystemRDL number types are integral and unsigned. In order to maintain direct compatibility with the
SystemRDL Expression Language, SystemRDL only supports bit and longint unsigned. Expressions

Copyright © 2015 - 2017 Accellera. All rights reserved. 29
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

October 16, 2017 SystemRDL 2.0/ D9

resolving into a negative value shall be cast to the two’s complement of the value, e.g, the expression
1 - 2, which occurs in a longint unsigned context whose bit width is 64, is resolved as
OXFFFFFFFFFFFFFFFF.

6.2.2 String data type

The SystemRDL Expression Language string data type is not a direct equivalent of the SystemVerilog
string data type. The SystemRDL Expression Language string data type supports UTF-8 encoding to allow
for non-English documentation.

A SystemRDL string can be seen as an immutable, unsized object, for which only the binary equality,
concatenation, and replication operators are supported (see Table 9).

6.2.3 Boolean data type

The additional type boolean is introduced as a result type for logical operations, as well as for compatibility
with previous SystemRDL versions. Boolean values shall be cast to the single bit values 1"b1 and 1" b0
(from true and false, respectively) for preserving sufficient compatibility with the SystemVerilog
Expression Language, as defined in Clause 7.

6.2.4 Reserved enumeration types

The additional types: accesstype, onreadtype, onwritetype, and addressingtype shall be considered as
reserved enumerations with no associated integral values for all purposes.

Reserved enumeration types only support binary equality operations.
6.2.5 Enumerations

An enumerated type encloses a set of constant named integral values into the enumeration’s scope. There are
no properties for the enum component beyond the universal properties defined in 5.2.1.

6.2.5.1 Defining enumerations

Unlike other SystemRDL components, enumerations are not instantiated and can only be defined
definitively (i.e., anonymous definitions are not allowed). Enumerated types can either be assigned to a
field’s encode property (see 9.10) or their enumerators can be referenced in expressions. Enumerator
references shall be prefixed with their enumerated type name and two colons (::), e.g.,
MyEnumeration: :MyValue.

An enum component definition appears as follows.
enum enum_name { encoding; [encoding;]* };

where
a) enum_name is a user-defined name for the enumeration
b) encoding is specified as follows
mnemonic_name [= value [{{universal_property;}*}];
where

1) mnemonic_name is a user-defined name for a specific value. This name shall be unique within
a given enum.

2) value shall be of an integral type.

30 Copyright © 2015 - 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Public Review Specification October 16, 2017

3) All values shall be unique, even if the value is automatically assigned.

4) universal_property is as defined in 5.2.1.
Example
This is an example of bit-field encoding.
enum myBitFieldEncoding {

first_encoding_entry = 8"hab;
second_entry = 8"hcd {

name = ''second entry"';
}:
third_entry = 8"hef {
name = "third entry, just like others";
desc = "this value has a special documentation';
}:
fourth_entry = 8"b10010011;
};
field {
encode = myBitFieldEncoding;
1 al8l;

6.2.5.2 Automatically assigned enumerator values

When the first enumerator value is unspecified, it is assigned O. Other enumerator values are incremented by
1, based on the value of the previous enumerator. Automatically assigned values cannot break the unique
value constraint when automatically assigning all the values of an enumeration using longint unsigned
values.

Examples

These are several examples of valid and incorrect enumeration definitions.

enum myAutoEnum { first_value ; second_value ; third_value ; } ;
// First_value = 0, second_value = 1, third_value = 2

enum myPartiallyAssignedEnum { a ; b ; ¢ =8"h6 ; d ; e =8"h12 ; ¥ ; } ;
// a =8"h0, b =8"h2, d = 8"h7, f = 8"h13

6.2.5.3 Type consistency

Enumerated types are strongly typed, therefore user-defined properties, struct members, or parameters of a
given enumerated type are type-checked when used in assignments or with relational operators. In other
expression contexts, enumerators are automatically cast to their integral values.

Example

The example below illustrates the use of enumerated types in operations and assignments.

enum FirstEnum {
VAL1 = 37hO

VAL2 = 3"h1 ;
VAL3 = 3"h2 ;
¥

Copyright © 2015 - 2017 Accellera. All rights reserved. 31
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

October 16, 2017 SystemRDL 2.0/ D9

enum SecondEnum {

VALL = 3"h0 ;

VAL2 = 3"h1 ;

VAL3 = 3"h2 ;
¥

property MyUDP { component = addrmap ; type = FirstEnum ; } ;

addrmap top {
reg some_reg { Ffield {} a[3] ; } ;

addrmap {
MyUDP = FirstEnum::VAL1 ; // Allowed
some_reg regA ;

regA.a -> reset = FirstEnum::VAL2 + SecondEnum::VAL3 ; // Enumerators are
cast to their integer value and added
} submapl ;

addrmap {

reg {
shared = longint®(FirstEnum::VAL1) == longint®(SecondEnum::VAL2) ; //
Allowed since we"re first casting the enumerators to their underlying
integral values
field {3 b ;
} other_shared_reg ;
} submap2 ;
¥

6.2.6 Identifier references

SystemRDL struct members, parameters, and component instances that are in the scope of a SystemRDL
statement in which the expression is defined can be referenced from the expression.

In addition, the SystemRDL rules for escaped identifiers, (see 4.3) shall apply to references inside the
SystemRDL Expression Language.

Hierarchical struct members and component instances are referenced using a dot delimiter (-) (see 5.1.4).
Example

struct inner_struct {
string foo ;

}s

struct my_struct {
inner_struct inner ;

j

addrmap top {
regfile some_regfile #(my_struct arg) {

reg {
desc = arg.inner.foo ;
field {} a ;
} regA ;
T
32 Copyright © 2015 - 2017 Accellera. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Public Review Specification October 16, 2017

} s

some_regfile #(.arg(my_struct®{ inner: inner_struct"{ foo: "reg desc" } }
)) regFAL2] ;

regFA[0] -regA.a -> desc
regFA[1] .regA.a -> desc

"field desc from regFA[O]" ;
"field desc from regFA[1]" ;

6.3 Aggregate data types

6.3.1 Arrays

A SystemRDL array describes an ordered collection of elements. Each array element shall be identified with
a unique array index. Arrays may be used as struct members, or in property or parameter declarations.

a)

b)

d)

An array shall be declared as follows:
array_type declaration []
where

1) array_type specifies the type allowed for each array element. All the types defined in Table 7,
as well as any user-defined enum types, but excepting array types, may be used as array types.

Effectively, multi-dimensional arrays are not supported. This limitation may be circumvented
by defining arrays of structs containing arrays.

2) declaration may be a struct member or a parameter name.
For example:

reg some_reg #(string NAME_AND DESC[]) {
field {} a ;
}
A user-defined property array shall be declared as follows:
array_type []
where

array_type specifies the type allowed for each array element. All the types defined in Table 31
may be used as user-defined property array types.

For example:
property myUDP { component = field ; type = longint unsigned[] ; } ;
An array may be assigned a sequence of values as follows:
left_hand_side = '{ [expr [, expr]*]? }
where

1) left_hand_side corresponds to the struct member, parameter, or property to which the array is
being assigned.

2) expr is an expression whose resolved type shall be assignment compatible with the type of the
array (see 6.4).

For example:
some_reg #(.NAME_AND DESC(*{ "hello™, "world™ }) regA ;
An empty array may be declared as follows:
left_hand_side = '{}
Array elements may be used in expressions by referencing their position in the array, as follows:
array_reference [index]

where

Copyright © 2015 - 2017 Accellera. All rights reserved. 33
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

October 16, 2017 SystemRDL 2.0/ D9

1) array_reference is a reference to the array containing the array element.

2) index is an expression that shall resolve to a longint unsigned.

For example:
regA -> name = NAME_AND_DESC[O] ;

6.3.1.1 Semantics

a) Array indices are O-based and strictly sequential.

b) Arrays are immutable and can only be modified by recreating an array (i.e., single values cannot be
reassigned).

¢) SystemRDL arrays are not constrained with respect to their sizes: a given array may be reassigned
with a new array of a different size.

d) An array element cannot reference another element from the same array.

e) An out of bound array reference shall raise an error.
6.3.1.2 Examples
6.3.1.2.1 User-defined property with array type

property MyUDP { component = reg ;
type = longint unsigned[] ;
default = *{1, 2} ; } ;

reg some_reg {
MyubP = *{ 2, 34, 73 } ;
}

6.3.1.2.2 User-defined property with aggregate type array type

struct mystruct { string foo; longint unsigned bar ; } ;
property MyUDP { component = all ;
type = mystruct[] ; } ;

reg some_reg {
MyUDP = *{ "mystruct { foo: "hello", bar: 23 },
"mystruct{ foo: "world", bar: 42 } } ;
¥

6.3.1.2.3 User-defined property with enum type array type

enum Location { Mem = 0, PCI = 1, DMA = 2 } ;
property MyUDP { component = reg ; type = Location[] ; } :

reg some_reg {

MyUDP = *"{ Location::Mem, Location::Mem, Location::PCIl } ;
T
6.3.1.2.4 Struct defining an array type member

struct mystruct { string[] foo } ;
property StructUDP { component = all ; type = mystruct ; } ;

34 Copyright © 2015 - 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Public Review Specification October 16, 2017

reg other_reg {
StructUDP = "mystruct { foo: *"{ "hello", "world"} } ;
3

6.3.1.2.5 Array element reference

field some_field #(string NAME_AND DESC[]) {
name = NAME_AND_DESC[O] ;
desc = NAME_AND_DESC[1] ;

3

6.3.2 Structures

Structs enable the creation of structured properties for more complex extension of component types.
6.3.2.1 Defining structures

6.3.2.1.1 struct definition

A struct definition appears as follows.
[abstract] struct struct_name [: base_struct_name]
{{member_type member_name;} *};

where
a) abstract optionally defines the struct as an abstract struct.
b) struct_name specifies the new struct type name.
¢) base_struct_name specifies optional inheritance or derivation.
d) member_type is the type of the composed value.

e) member_name is the name of the value. Member names shall be unique within a struct and its base
class, recursively.

6.3.2.1.2 Semantics for defined structs

a) A struct can be used within user-defined property definitions, parameters, arrays, and other structs.
b) The name of the struct is added to the type name namespace. Struct type names shall be unique.
¢) Structs may include all of the types defined in Table 7.

d) Structs may not include items that directly or indirectly refer to the struct being defined (i.e., no cir-
cular dependencies).

e) A struct may be declared as abstract, which specifies that it cannot be directly instantiated. Struct
types derived from an abstract struct are not abstract, unless specified explicitly using the abstract
keyword.

6.3.2.2 Deriving structures
6.3.2.2.1 struct derivation

A struct declaration may derive from another struct by specifying the base struct’s name after a colon (Z),
e.g.,
struct base_struct {
bit foo ;
}

Copyright © 2015 - 2017 Accellera. All rights reserved. 35
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

October 16, 2017 SystemRDL 2.0/ D9

struct derived_struct : base_struct {
longint unsigned bar ;

}

struct final_struct : derived_struct {
// Ffinal_struct"s members are foo, bar, and baz.
string baz ;

}

6.3.2.2.2 Semantics for derived structs

a) A derived struct inherits all its base’s members, recursively.

b) Any member declared in the derived struct shall be unique, relative to both the derived struct and
its base, recursively.

¢) Parameters and user-defined properties declaring a struct type may be initialized using any derived,
non-abstract, struct instance in their assignment’s right-hand side (i.e., derived types are considered
as assignment compatible with all their base types, following the definition from 6.4). Derived
struct instances passed in this way shall preserve all their member values (for code generation pur-
poses), even though only the members from the declared struct type shall be visible from the Sys-
temRDL code.

6.3.2.3 Instantiating structures
6.3.2.3.1 struct instantiation

A struct is instantiated as follows:
struct_name '{ [member_name : member_value {, member_name : member_value}*] }

where
a) struct_name is the name of the struct type that is being instantiated.
b) member_name is the name of a member as specified in the struct’s definition.
¢) member_value is the value being assigned.

6.3.2.3.2 Semantics for instantiated structs

a) Struct assignments are always by value.

b) When defining struct member values, unassigned members shall receive a default value depending
on their type, when available, as defined in Table 7.

c¢) All the members from a struct instance shall be assigned a value, either explicitly or by default.
Undefined struct members shall raise an error.

6.3.2.4 Examples
Example 1

This example defines a simple struct and uses it in a user-defined property.

struct structl {
bool abool;
string astring;

}:

36 Copyright © 2015 - 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Public Review Specification October 16, 2017

property pl {
component = field;
type = structl;
default = structl®"{abool:true, astring:"hello"};

};

Example 2
This example defines a struct that declares a member which is also struct.

struct struct_composed {
structl s;
string str;
}:
field my_field #(struct_composed PARAM) {} ;

my_Ffield #(.PARAM(struct_composed”{ str:"world",
s: structl®{ abool:true,
astring:"blah"}}

) fl;
Example 3
This example defines and derives an abstract struct.

abstract struct absstruct {
string astring;
};
struct substruct:absstruct {
bool abool;
}:
property p3 {
component = field;
type = absstruct ;
default =substruct®{abool:false, astring:'"foo"};

}:

6.4 Type compatibility

As SystemRDL uses only a subset of the data types defined in the SystemVerilog, only three levels of type
compatibility shall effectively be used when resolving SystemRDL expressions: matching, assignment
compatible, and incompatible. All three levels match their SystemVerilog equivalent. Type coercion, as
happens in the context of assignments (i.e., between assignment compatible types), is detailed in 6.5.

In the context of assignments, if the left hand-side expects a given abstract struct type, all derived struct
types shall be considered as compatible.

6.5 Casting

SystemRDL only supports static (i.e., type-based) and constant expression (i.e., bit length-based) casts from
SystemVerilog. The additional types introduced in SystemRDL are bound by the casting rules in Table 8.

Copyright © 2015 - 2017 Accellera. All rights reserved. 37
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

October 16, 2017

SystemRDL 2.0/ D9

Supported static types are: boolean, bit, longint unsigned, string, accesstype, addressingtype,
onreadtype, and onwritetype. Table 8 defines which expression types are compatible with static type casts

(x corresponds to a conversion that is assignment compatible — and, thus, also cast compatible).

Table 8—Allowed cast operations (cast and assignment compatible types)

Type

boolean

bit

longint
unsigned

string

access
type

addressing
type

onread

type

onwrite

type

boolean X X X

bit X X X

longint X X X
unsigned

string X

accesstype X

addressing X

type

onreadtype X

onwritetype X

Static cast operations shall be resolved according to the following rules.
a) All types can be cast to themselves.

b) When casting boolean to sizedNumeric or unsizedNumeric, true shall be converted to
1"bl and false to 1"b0.

¢) When casting a sizedNumeric, if the bit width of the target type does not match, this results in
the upper bit zero-extension or truncation of the most significant bits.

d) When casting sizedNumeric or unsizedNumeric to boolean, zero (0) shall be converted
to False, any other value shall be converted to true.

38 Copyright © 2015 - 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Public Review Specification

7. Expressions

7.1 Overview

The SystemRDL Expression Language is based on the SystemVerilog Expression Language as specified in

IEEE Std 1800-2012.

October 16, 2017

The goal of the SystemRDL Expression Language is for it to be a strict subset of SystemVerilog, i.e., the

expressions defined in SystemRDL should be easily ported-to or incorporated-into a SystemVerilog file and

interpreted by any SystemVerilog processor.

In order to represent and manipulate types and concepts proper to SystemRDL, the SystemVerilog
Expression Language has been functionally limited and changes introduced.

7.2 Operators

Table 9 gives an overview of the SystemVerilog operators and how SystemRDL supports them (or not).

Table 9—SystemVerilog operators

0{’:;::1“ Name Operand data type
= Binary assignment operator Only supported for specific cases (see 7.2.1)
t==[=%= Binary arithmetic assignment operators Assignments are not supported
%= Binary arithmetic modulus assignment operator | Assignments are not supported
&=|="= Binary bit-wise assignment operator Assignments are not supported
>>= <<= Binary logical shift assignment operators Assignments are not supported
>S>>= <<<= Binary arithmetic shift assignment operators Assignments are not supported
?: Conditional operator First operand: boolean, other operands: any
+- Unary arithmetic operator Integral
++ - Unary decrement/increment operators Assignments are not supported
! Unary logical negation operator Integral
~ Unary bitwise negation operator Integral
& ~& |~ *~" | Unary reduction operators Integral
A
+- k) Binary arithmetic operators Integral
% Binary modulus operator Integral
& | NN A~ Binary bitwise operators Integral
>> << Binary logical shift operators Integral
>>> <<< Binary arithmetic shift operators Not supported
&& || Binary logical operators Integral

Copyright © 2015 - 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

39

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

October 16, 2017 SystemRDL 2.0/ D9

Table 9—SystemVerilog operators (Continued)

O?:l:::lor Name Operand data type

<<=>>= Binary relational operators Integral, user-defined enums

=I= Binary logical equality operators Any, except structural instance references

==l== Binary case equality operators Unknown or high-impedance values are not
supported

==?1=? Binary wildcard equality operators Unknown or high-impedance values are not
supported

inside Binary set membership operator Only used within top level of constraints

dist Binary distribution operator Randomization is not supported

{3 {3 Concatenation and replication operator Integral, string, boolean, reserved enums

{<<{}} &>} Stream operators Not supported

Additional support considerations for SystemVerilog operators are detailed below.

7.2.1 Assignment operators

Since the SystemRDL Expression Language does not allow using variables, it only supports single value
assignments for which the left-hand side is a property, a parameter (in the context of a parameter
declaration), or a struct member reference (in the context of a post-property assignment). All other
assignment operators are not supported.

7.2.2 Logical operators

The result of the evaluation of one of the supported SystemVerilog logical operators (i.e., AND (&&) and OR
(1 D)) shall be one of the boolean values true or false.

Similarly, the unary logical negation operator (1) converts a true value into false and a false value
into true.

Also, the binary logical equality operators (== and !=), aggregate types may be compared for equality by
comparing the values of their individual members, recursively. Primary type members are compared by
applying the default type and value equality rules.

7.3 Expression evaluation rules

Due to the data types supported by SystemRDL, the rules for determining expression types and evaluating
expressions are more restrictive than those defined in IEEE Std 1800-2012, subclause 11.8.

7.3.1 Rules for determining expression types

The following rules shall be applied for determining the resulting type of an expression.
— Expression type depends only on the operands. It does not depend on the left-hand side (if any).

— All numbers and expression results are unsigned.

40 Copyright © 2015 - 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Public Review Specification October 16, 2017

— The size of any self-determined operand is determined by the operand itself and independent of the
remainder of the expression.

— Any expression that would result in an unknown (X) value shall instead raise an error.
7.3.2 Rules for evaluating expressions
All expressions are evaluated in a self-determined context, as specified in IEEE Std 1800-2012, subclause

11.6.1, which implies that the left-hand side of a property assignment is never taken into consideration when
evaluating expressions.

Copyright © 2015 - 2017 Accellera. All rights reserved. 41
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

October 16, 2017

42

SystemRDL 2.0/ D9

Copyright © 2015 - 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Public Review Specification

8. Signals

8.1 Introduction

October 16, 2017

A signal is a non-structural component used to define and instantiate wires (as additional inputs and/or
outputs). Signals create named external ports on an implementation and can connect certain internal
component design properties to the external world. Signal definitions have the same definition and
instantiation as other SystemRDL components; see 5.1. To use signals to control resets in SystemRDL, see

17.1.

8.2 Signal properties

Table 10 shows the signal properties.

Table 10—Signal properties

Property Implementation/Application Type Dynamic?
signalwidth | Width of the signal. longint No
unsigned
sync Signal is synchronous to the clock of the component. boolean Yes
async Signal is asynchronous to the clock of the component. boolean Yes
cpuif _reset Default signal to use for resetting the software interface logic. If boolean Yes
cpuif_reset is not defined, this reverts to the default reset signal. This
parameter only controls the CPU interface of a generated slave.
field_reset Default signal to use for resetting field implementations. If field_reset boolean Yes
is not defined, this reverts to the default reset signal.
activelow Signal is active low (state of O means ON). boolean Yes
activehigh Signal is active high (state of 1 means ON). boolean Yes

Indicates whether a property can be assigned dynamically.

8.2.1 Semantics

a) sync and async shall not be set to true on the same signal.

b) A signal that does not specify sync or async is considered sync. A signal may not be both sync and

async.

¢) activelow and activehigh shall not be set to true on the same signal.

d) A signal that does specify activehigh or activelow has no formal specified active state.

e) field_reset and cpuif reset follow the rules of application as defined in 17.1.

f) cpuif _reset property can only be set true for one instantiated Signal within a lexical scope.

g) field_reset property can only be set to true for one instantiated Signal within a lexical scope.

h) If signalwidth is specified in a signal component definition, the width specified by an instantiation
shall match.

8.2.2 Example

See the example in 8.3.2.

Copyright © 2015 - 2017 Accellera. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

43

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

October 16, 2017 SystemRDL 2.0/ D9

8.3 Signal definition and instantiation

In addition to the general rules for component definition and instantiation (see 5.1), the following rules also
apply.

8.3.1 Semantics

a) If signalwidth (see 8.2) is not defined, signal instances may be declared as single-bit or multi-bit
signals, as defined in (5.1.2).

b) If signalwidth is not predefined in the component definition, a signal type may be instantiated as

any width.
c) If signalwidth is predefined during signal definition, any specified signal width shall match the
predefined width.
8.3.2 Example

This example defines an 8-bit field and connects it to a signal so the reset value for this field is supplied
externally.

addrmap foo {
reg { field {} a[8]=0; } regl;
signal { signalwidth=8;} mySig[8];
regl.a->reset = mySig; // Instead of resetting this field to a constant
// we connect it to a signal to provide an
// External reset value

44 Copyright © 2015 - 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Public Review Specification October 16, 2017

9. Field component

9.1 Introduction

The field component is the lowest-level structural component in SystemRDL. No other structural
component can be defined within a field component; however, signal, enumeration (enum), and constraint
components can be defined within a field component. The field component is also the most varied
component in SystemRDL because it is an abstraction representing different types of storage element
structures. Field definitions have the same definition and instantiation as other SystemRDL components; see
5.1.

Typically, a field component describes a flip-flop or wire/bus, along with the logic to set and sample its
value for each instantiated field in the design. Properties specified for a field serve multiple purposes, from
determining the nature of the behavior that is implied for a field to naming and describing a field. Storage
elements accessed by software may contain a single entity or a number of bit-fields each with its own
meaning and purpose. In SystemRDL, each entity in a software read or write is termed a field.

9.2 Defining and instantiating fields

Since a field component describes the lowest-level components within SystemRDL, it cannot contain other
fields. Fields are instantiated in a register (reg) component (see Clause 10). Fields are defined and
instantiated as described in 5.1, with the following additional semantics. See also 9.3.

a) No other types of structural components shall be defined within a field component.
b) Fields shall be instantiated only within a register component.

¢) Unless bit allocation is explicitly defined, fields shall be positioned sequentially in the order they are
instantiated in a register, starting with the least significant bit. Isb0 mode defines O as the least sig-
nificant bit, which is the default, and msb0 defines regwidth-1 as the least significant bit.

d) Inthe default mode Isb0, unless bit allocation is explicitly defined, fields shall be positioned sequen-
tially in the order they are instantiated in a register, starting at bit O with no padding between fields.
(Each subsequent field’s least significant bit (LSB) shall be made equal to one (1) greater than the
most significant bit (MSB) of the previous field.)

e) In the mode msb0, unless bit allocation is explicitly defined, fields shall be positioned sequentially
in the order they are instantiated in a register, starting at bit regwidth-1 with no padding between
fields. (Each subsequent field’s least significant bit (LSB) shall be made equal to one (1) less than
the most significant bit (MSB) of the previous field.)

f) The exact bit position of instantiated fields in a register may determined by the SystemRDL com-
piler as described in d or specified explicitly by using exact indices (see Clause 10).

g) The msb0 and Isb0 properties shall only be applied to an address map component (see Clause 13).

h) A field instantiation which is not followed by a specific size or index contained square brackets ([])

defaults to size of the field definition’s fieldwidth parameter. If the definition is anonymous, the
default fieldwidth is 1.

9.3 Using field instances

Fields can be instantiated as single or multiple bits. Fields shall be instantiated in a register component and
the field’s bit position can be derived implicitly by a compiler or specified explicitly by a user. For the field
component only, the field's bit position can be implicitly or explicitly specified. This notation is of the form

Copyright © 2015 - 2017 Accellera. All rights reserved. 45
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

a)

b)

¢)

October 16, 2017 SystemRDL 2.0/ D9

for definitive field instantiation

field_type [#(field_parameter_instance [, field_parameter_instance]*)] field_instance_element
[, field_instance_element]*;

where

1) field_type is the user-specified name for a previous definitively defined component of type
field.

2) field_parameter_instance is specified as
field_param_name(field_param_val)

where field_param_name is the name of the parameter defined with the field and

field_param_val is an expression whose result is the value of the parameter for this instance
(see 5.1.2 a).

for anonymous field instantiation
field {field_bodys} field_instance_element [, field_instance_element]*;
where

field_body is as described in 5.1.1, subject to limitations for a definitive field instantiation (see
a).

For both field instantiation types, field_instance_element is defined as

field_instance_name [[constant_expression] | [constant_expression : constant_expression]]
[= constant_expression |

where
i) field_instance_name is the user-specified name for instantiation of the component.
il) constant_expression is an expression that resolves to a longint unsigned.
[constant_expression] specifies the instantiated field’s bit width.

[constant_expression : constant_expression] is termed a range and defines the msb and
Isb of the field within the context of the register within which it is instantiated.

= constant_expression specifies the field instance’s reset value (see 9.5).

Examples

These are examples of the anonymous form.

field {} singlebitfield; // 1 bit wide, not explicit about position
field {} somefield[4]; // 4 bits wide, not explicit about position
field {3 somefield2[3:0]; // a 4 bit field with explicit indices

field {} somefield3[15:8]; // an 8 bit field with explicit indices
field {} somefield4[0:31]; // a 32 bit Field with explicit indices

How the compiler resolves bit positions for implicit fields is detailed in 10.1, which describes the register

50 component. Single element arrays may be treated by a SystemRDL compiler as a scalar or an array.

9.4 Field access properties

The combination of field access properties specified for a field component determines the component’s

55 behavior. Table 11 lists the available field access properties and describes how they are implemented.

46 Copyright © 2015 - 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Public Review Specification

October 16, 2017

Table 11—Field access properties

Property Behavior/Application Type Dynamic?
hw Design’s ability to sample/update a field. access No
type
SW Programmer’s ability to read/write a field. access Yes
type

Indicates whether a property can be assigned dynamically.

9.4.1 Semantics

a) All fields are given full access (read and write) by default.

b) rw (and wr) signify a field is both read and write; r indicates read-only; w indicates write-only; and
na specifies no read/write access is allowed.

¢) All hardware-writable fields shall be continuously assigned unless a write enable is specified.

d) When a field is writable by software and write-only by hardware (but not write-enabled), all soft-
ware writes shall be lost on the next clock cycle. This shall reported as an error.

e) After a reset occurs, a field with rwl or wl software access, that field can only be written once by
software. All subsequent software writes are then ignored until the field is reset again.

f) The standard implementation behavior is based on the combination of read and write properties

shown in Table 12.

Table 12—Field behavior based on properties

Software | Hardware Code sample Implementation
R+W R+W field ¥ { sw = rw; hw = rw; }; Storage element

R+W R field f { sw = rw; hw = r; }; Storage element

R+W W field T { sw = rw; hw = w; }; Storage element

R+W - field ¥ { sw = rw; hw = na; }; Storage element

R R+W field f { sw =1r; hw = rw; }; Storage element

R R field f { sw=r; hw = r; }; Wire/Bus — constant value
R W field f { sw = r; hw = w; }; Wire/Bus — hardware assigns value
R - field f { sw = r; hw = na; }; Wire/Bus — constant value
W R+W field ¥ { sw = w; hw = rw; }; Storage element

W R field f { sw =w; hw = r; }; Storage element

W W field T { sw = w; hw = w; }; Error — meaningless

W - field ¥ { sw = w; hw = na; }; Error — meaningless

- R+W field ¥ { sw = na; hw =rw; }; Undefined

- R field ¥ { sw = na; hw = r; }; Undefined

- W field T { sw = na; hw = w; }; Error — unloaded net

- - field T { sw = na; hw = na; }; Error — nonexistent net

Copyright © 2015 - 2017 Accellera. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

47

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

October 16, 2017 SystemRDL 2.0/ D9

NOTE—Any hardware-writable field is inherently volatile, which is important for verification and test purposes.
9.4.2 Example

See Table 12.

9.5 Hardware signal properties

While all of the hardware signal properties can be set within a field definition, typically they are assigned
after instantiation as these properties refer to items external to the field itself. By default, the reset value of
fields shall be unknown, e.g., X in Verilog. A specification can use static or dynamic reset values; however,
only static reset values shall be specified during field instantiation. The reset value, which is considered a
property in SystemRDL, shall follow an equal sign (=) after the instance name and the eventual size or
MSB/LSB information.

For the syntax for specifying reset values, see 9.3.

Table 13 defines the hardware signal properties.

Table 13—Hardware signal properties

Property Behavior/Application Type Dynamic?
next The next value of the field; the D-input for flip-flops. reference Yes
reset The reset value for the field when resetsignal is asserted. bit or ref- Yes
erence
resetsignal Reference to the signal used to reset the field (see 17.1). reference Yes

Indicates whether a property can be assigned dynamically.
9.5.1 Semantics

a) Any integral value can be used to specify the reset value of a field.

b) When a field has access properties of sw=r and hw=w without having a write enable, the existence
of a reset value shall implement a storage element and the reset value only holds until the reset is
deasserted.

¢) The reset value cannot be larger than can fit in the field or an error shall be reported.

d) When reset is a reference, it shall reference another field of the same size. Upon reset, the field is
reset to the current value of the referenced field.

e) next and reset cannot be self-referencing.
f) reset always has priority over next when resetsignal is asserted.

g) Ifno reset value given, the field is not reset, even if it has a resetsignal.
9.5.2 Example
This example shows different types of hardware signal properties set during field instantiations.

signal {} some_reset;

field { reset = 1°bl; } a;
field {} b=0;

field {} c=0;

c->resetsignal = some_reset;
field {} d=0x0;

48 Copyright © 2015 - 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Public Review Specification October 16, 2017

d->next = a; // d gets the value of a. D lags a by 1 clock.
field {} e[23:21]=3"b101;
b->reset = 3”bl; // Override the default reset value of e from 101 to 001

9.6 Software access properties

The software access field properties provide a means of specifying commonly used software modifiers on
register fields. All the software properties which are defined as boolean values have a default value of false.
Some of these properties perform operations that directly effect the value of a field (relr, woset, and woclr),
others allow the surrounding logic to effect software operations (swwe and swwel), and still others allow
software operations effecting the surrounding logic (swmod and swacc). The onread property enables
setting values equivalent to relr and rset, while the onwrite property enables setting values equivalent to
woclr and woset.

Table 14 defines the software access properties and uses pseudo-code snippets to define the behaviors. The
pseudo-code is of Verilog style and should be interpreted as such. The exact behavior of these properties
depends upon the semantics of the HDL generated by a particular SystemRDL implementation, together
with the execution environment (e.g., simulator) for that HDL.

Table 14—Software access properties

Property Behavior/Application Type Dynamic?®
rclr Clear on read (Field = 0). boolean Yes
rset Set on read (field = all 1’s). boolean Yes
onread Read side-effect. See Table 15. onread- Yes

type
woset Write one to set (Field = field | write_data). boolean Yes
woclr Write one to clear (Field = field & ~write_data). boolean Yes
onwrite Write function. See Table 16. onwrite- Yes
type
swwe Software write-enable active high (Field = swwe ? new : cur- | booleanor | Yes
rent). reference
swwel Software write-enable active low (Field = swwel ? current : booleanor | Yes
new). reference
swmod Assert when field is software written or cleared. boolean Yes
swacc Assert when field is software accessed. boolean Yes
singlepulse The field asserts for one cycle when written 1 and then clears back to O | boolean Yes
on the next cycle. This creates a single-cycle pulse on the hardware
interface.

Indicates whether a property can be assigned dynamically.

Copyright © 2015 - 2017 Accellera. All rights reserved. 49
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

October 16, 2017

SystemRDL 2.0/ D9

Table 15—Software read side-effect onread value

onread
property Behavior/Application
value
relr All the bits of the field are cleared on read (Field = 0).
rset All the bits of the field are set on read (field = all 1’s).
ruser The read modifies the field in a way which does not match the other

defined read side-effects.

Table 16—Software write function onwrite values

onwrite
property Behavior/Application
value

woset Bitwise write one to set (Field = field | write_data).
woclr Bitwise write one to clear (Field = field & ~write_data).
wot Bitwise write one to toggle (Field = field ™ write_data).
WZS Bitwise write zero to set (Field = field | ~write_data).
wze Bitwise write zero to clear (Field = field & write_data).
wzt Bitwise write zero to toggle (Field = field ~~ write_data).
welr All bits of the field are cleared on write (Field = 0).
wset All bits of the field are set on write (Field = “1).
wuser The write modifies the field in a way which does not match the other

defined write functions and is not a write without a write function.

9.6.1 Semantics

50

a)

b)

d)

e)

2
h)

swmod indicates a generated output signal shall notify hardware when this field is modified by soft-
ware. The precise name of the generated output signal is beyond the scope of this document. Addi-
tionally, this property may be used on the right-hand side of an assignment to another property.

NOTE—Since relr, rset, and onread modify the field value with a software read transaction, the implementa-
tion of properties like swmod are asserted during software reads when relr or rset are true or onread has a
value.

swacc indicates a generated output signal shall notify hardware when this field is accessed by soft-
ware. The precise name of the generated output signal is beyond the scope of this document. Addi-
tionally, this property may be used on the right-hand side of an assignment to another property.

Fields specified with software access properties in Table 14 need to consider how they effect the
behavior defined in Table 12. For example, if a field is relr, this results in a storage element regard-
less of whether or not the field is writable by software.

swwe and swwel have precedence over the software access property in determining its current
access state, e.g., if a field is declared as sw=rw, has a swwe property, and the value is currently
false, the effective software access property is sw=r.

swwe and swwel are mutually exclusive.
When specified, relr resets a field to O and not its default value.
singlepulse fields shall be instantiated with a width of 1 and the reset value shall be specified as O.

onread, rclr and rset are mutually exclusive; only one can be set per field.

Copyright © 2015 - 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Public Review Specification October 16, 2017

i) A field with an onread property shall have software read access.

j) A field with an onread value of ruser shall be external.

k) onwrite, woclr, and woset are mutually exclusive; only one can be set per field.
1) A field with an onwrite property shall have software write access.

m) A field with an onwrite value of wuser shall be external.
9.6.2 Examples
Example 1
This example applies software properties using implicit and explicit methods of setting the properties.
field {
rclr; /7 Implicitly set the rclr property to true
swwe = true; // Explicitly set the swwe property to true
} a;
Example 2

This example uses the default keyword with these software properties and then overrides them.

reg example2 {
default woclr = true; // Explicitly set default of woclr to true

default swmod; // Implicitly set default of swmod to true
field {} a; // Assumes defaults
field {3} b; // Assumes defaults

b->rclr=false; // Dynamic Assignment to false
field {rclr = false; } c;// Overrides rclr default
field {swmod = false; } d;// Overrides swmod default
field {rclr = false; swmod = false; } e;// Overrides both defaults
d->next = b->swmod;
// next value of d will be field b"s 1-bit software mod flag generated
// by SystemRDL

¥

9.7 Hardware access properties

Hardware access properties can be applied to fields to determine when hardware can update a hardware
writable field (we and wel), generate input pins which allow designers to clear or set the field (hwelr and
hwset) by asserting a single pin, or generate output pins which are useful for designers (anded, ored, and
xored).

Write-enable is critical for certain software-writable fields. The clear on read feature (rclr, see Table 14)
returns the next value (see 9.5) to software before clearing the field. When not write-enabled, the current
value is used instead since the “next” value is the current value. In the case of counters, the write-enable is
used to determine when a counter can be incremented.

The hwenable and hwmask properties can specify a bus showing which bits may be updated after any
write-enables, hardware-clears/-sets or counter-increment has been performed. The hwenable and hwmask
properties are similar to we and wel, but each has unique functionality. The we and wel act as write enables
to an entire field for a single bit or multiple bits. The hwmask and hwenable are essentially write enables or
write masks, but are applied on a bit basis. The priority of assignments a SystemRDL compiler should use is

Copyright © 2015 - 2017 Accellera. All rights reserved. 51
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

October 16, 2017 SystemRDL 2.0/ D9

shown in Table 17, which depicts a flow of information from left to right showing the stages that happen
when updating a field from its current value to determine its next state value.

A field’s width is typically determined when it is instantiated; however, there are times when specifying a
field’s width up-front is critical. If specified, the fieldwidth property forces all instances of the field to be a
specified width. If a field is instantiated without a specified width, the field shall be fieldwidth bits wide. It
shall be an error if the field is instantiated with an explicitly specified width that differs from the fieldwidth.

Table 17—Assignment priority

Event stage -> Hardware next stage -> Field next stage -> Register assign stage
we /wel/intr edge logic counter incr / counter decr ~ SW/HW selection wire / dff assign
counter load / counter hwset / hwelr
we logic

intr mask/en/sticky

Table 18 defines the hardware access properties.

Table 18—Hardware access properties

Property Behavior/Application Type Dynamic?®
we Write-enable (active high). booleanor | Yes
reference
wel Write-enable (active low). booleanor | Yes
reference
anded Logical AND of all bits in field. boolean Yes
ored Logical OR of all bits in field. boolean Yes
xored Logical XOR of all bits in field. boolean Yes
fieldwidth Determines the width of all instances of the field. This number shall be | longint No
a numeric. The default value of fieldwidth is undefined. unsigned
hwelr Hardware clear. This field need not be declared as hardware-writable. booleanor | Yes
reference
hwset Hardware set. This field need not be declared as hardware-writable. booleanor | Yes
reference
hwenable Determines which bits may be updated after any write enables, hard- reference Yes
ware clears/sets or counter increment has been performed. Bits that are
set to 1 will be updated.
hwmask Determines which bits may be updated after any write enables, hard- reference Yes
ware clears/sets or counter increment has been performed. Bits that are
set to 1 will not be updated.

Indicates whether a property can be assigned dynamically.
9.7.1 Semantics

a) we determines this field is hardware-writable when set, resulting in a generated input which enables
hardware access.

52 Copyright © 2015 - 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Public Review Specification October 16, 2017

b) wel determines this field is hardware-writable when not set, resulting in a generated input which
enables hardware access.

¢) we and wel are mutually exclusive.

d) hwenable and hwmask are mutually exclusive.
9.7.2 Example
This example shows the application of a write-enable and the boolean anded.

reg example {
default sw = r;

field { anded;} a[4]=0; // This field will update its value every clock
// cycle. hw=rw by default. This field will also have
// an output ANDing the 4 bits of the field together
field { we; } b=0;// This field will only update on clock cycles
// where the we is asserted. The name of the we signal is
// a function of the SystemRDL Compiler.

9.8 Counter properties

SystemRDL defines several special purpose fields, including counters. A counter is a special purpose field
which can be incremented or decremented by constants or dynamically specified values. Additionally,
counters can have properties that allow them to be cleared, set, and indicate various status conditions like
overflow and underflow.

9.8.1 Counter incrementing and decrementing

When a field is defined as a counter, the value stored by the field is the counter’s current value. There is an
implication of an additional input which shall increment/decrement the counter when asserted. Counter
incrementing and decrementing in SystemRDL are controlled via the counters incrvalue/decrvalue and
incrwidth/decrwidth properties. The incrvalue/decrvalue property defaults to a value of 1, but can be set
to any constant that can be represented by the width of the counter. Additionally, the incrvalue/decrvalue
can be assigned to any signal or other field in the current address map scope so counters can increment using
dynamic or variable values. The incrwidth/decrwidth properties can be used as an alternative to incrvalue/
decrvalue so an external interface can be used to control the incrvalue/decrvalue externally from
SystemRDL. A SystemRDL compiler shall imply the nature of a counter as a up counter, a down counter, or
an up/down counter by the properties specified for that counter field.

By default, counters are incremented/decremented by one (1), but another static or dynamic increment/
decrement value can be specified. The increment/decrement value shall be equal to or smaller than the
field’s width.

Dynamic values may be another field instance in the address map of the same or smaller width, or another
signal in the design. If an externally defined signal is used for dynamic incrementing, its input is inferred to
have the same width as the counter.

Additionally, the properties incr and decr can be used to control the increment and decrement events of a
counter. These do not control the increment or decrement values, as incrvalue and decrvalue, but the actual
increment of the counter (as shown in Example 2). These properties can be only be assigned as references to
another component.

Copyright © 2015 - 2017 Accellera. All rights reserved. 53
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

October 16, 2017 SystemRDL 2.0/ D9

Example 1
This shows counter incrementing and decrementing.
field counter_f { counter; };

counter_f countl[4]; // Define a 4 bit counter from 3 to O
countl->incrvalue=4~3; // Increment the counter by 3 when incrementing
// countl implies an UP counter

counter_f count2[3]; // Define a 3 bit counter from 6:4
count2->decrwidth=2; // provide 2 bit interface for a user to decide the decr
// value. This implies a down counter.
counter_f count3[5]=0; // Defines a 5 bit counter from 11 to 7
count3->incrvalue=2; // Define a an Up/Down Counter
count3->decrvalue=4;

field {} count4_incr[8] = 8”hOf; // define a field to control the incr
// value of another field.

counter_T count4[8]=0;
count4->incrvalue = count4_incr; // Counter is incremented by the value of
// another field in the same address map.

Example 2
This example uses incr to connect two 16-bit counters together to create a 32-bit counter.

field some_counter {
counter;
we;
S // End of Reg: some_counter

reg some_counter_reg {
regwidth=16;
some_counter count[16]=0; // Create 16 bit counter POR to O
}; // End of Reg:

// Example 32 bit up counter
some_counter_reg countl_low;
some_counter_reg countl_high;

countl_high.count->incr = countl_low.count->overflow;
// Daisy chain the counters together to create a 32 bit counter from the 2
// 16 bit counters

9.8.2 Counter saturation and threshold

Counters are unsaturated by default, e.g., a 4-bit counter with a value of OXF that is incremented by 1 has
the value 0XO. This is referred to as rolling over. The value of a incrsaturate saturating counter shall never
exceed the increment saturation value and the value of a decrsaturate saturating counter shall never be less
than the decrement saturation value. By default, the increment saturation value is the maximum value that
the counter can hold and the decrement saturation value is zero (0). Assigning a static or dynamic saturated
value is similar to assigning increment/decrement values, see 9.8.1.

54 Copyright © 2015 - 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Public Review Specification October 16, 2017

Counters in SystemRDL may have an optional (static or dynamic) threshold value. The threshold property
does not cap the value of a counter in the way saturate does; instead, threshold counters are inferred to
contain an output which designates whether the counter’s value exceeds the threshold. See also 9.8.1.

saturate and threshold counters may be used individually and specified in any order.
Example 1
This shows counter saturation and thresholds.

field counter_f { counter; };
counter_f countl[4]; // Define a 4 bit counter from 3 to O
countl->incrsaturate=4"hf; // keeps the counter from counting past 4°hf

counter_f count2[3]; // Define a 3 bit counter from 6:4
count2->decrthreshold=3"h2; // provide assertion when count hits 2

counter_f count3[5]=0; // Defines a 5 bit counter from 11 to 7
count3->incrsaturate;// Implies 5’hlF by default
count3->decrsaturate; // Implies 5°h00 by default
count3->decrthreshold=5"h3;

field {3} countd_sat[4] = 4°h2; // define a field to control the saturate value
// of another field
field {} count4_thresh[4] =4"ha;

counter_T count4[4]=0; // This counters saturate and threshold are both dynamic
count4->incrthreshold = count4_thresh;
count4->incrsaturate = count4_sat;

Besides assigning values or references to the saturate or threshold properties on the left-hand side of an
assignment in SystemRDL, these properties can also be referenced on the right-hand side of an expression to
indicate the threshold has been crossed or the counter has saturated. This is often useful for generating an
interrupt indicating a specific condition has occurred.

Example 2

This shows right-hand side usage of saturate and threshold.

field {} countd4_sat[4] = 4°h2; // define a field to control the saturate value
// of another field

field {} count4_thresh[4] =4"ha;

field {} is_at threshold=0;

field {} is_saturated=0;

counter_f count4[4]=0; // This counters saturate and threshold are both dynamic
count4->incrthreshold = count4_thresh;
count4->incrsaturate = count4_sat;

// Single-bit result of threshold comparison assigned to is_at_threshold field
is_at_threshold->next = count4->incrthreshold;
is_saturated->next = count4->incrsaturate;

Counters can also use the properties underflow and overflow to indicate the counter has wrapped (either
decrementing when O for decrsaturate or incrementing when all 1s for incrsaturate). These are useful for
many applications such as generating an interrupt based on a counter overflow/underflow.

Copyright © 2015 - 2017 Accellera. All rights reserved. 55
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

October 16, 2017

Example 3

This shows overflow and underflow counter properties.

field counter_f { counter; };

field {3}

has_overflowed;

SystemRDL 2.0/ D9

counter_f countl[5]=0; // Defines a 5 bit counter from 6 to 1
countl->incrthreshold=5hF;

has_overflowed->next = countl->overflow;

Table 19 defines the counter field properties.

Table 19—Counter field properties

Property Behavior/Application Type Dynamic?®
counter Field implemented as a counter. boolean Yes
threshold This is an alias of incrthreshold. boolean, Yes

bit, or ref-
erence
saturate This is an alias of incrsaturate. boolean, Yes
bit, or ref-
erence
incrthresh- Indicates the counter has a threshold in the incrementing direction. A boolean, Yes
old comparison value or the result of a comparison. See also: 9.8.2.1. bit, or ref-
erence
incrsaturate | Indicates the counter saturates in the incrementing direction. A compar- | boolean, Yes
ison value or the result of a comparison. See also: 9.8.2.1. bit, or ref-
erence
overflow Overflow signal asserted when counter overflows or wraps. boolean Yes
underflow Underflow signal asserted when counter underflows or wraps. boolean Yes
incrvalue Increment counter by specified value. bit or ref- Yes
erence
incr References the counter’s increment signal. Use to actually increment reference Yes
the counter, i.e, the actual counter increment is controlled by another
component or signal (active high).
incrwidth Width of the interface to hardware to control incrementing the counter longint Yes
externally. unsigned
decrvalue Decrement counter by specified value. bit or ref- Yes
erence
decr References the counter’s decrement signal. Use to actually decrement reference Yes
the counter, i.e, the actual counter decrement is controlled by another
component or signal (active high).
decrwidth Width of the interface to hardware to control decrementing the counter longint Yes
externally. unsigned
56 Copyright © 2015 - 2017 Accellera. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Public Review Specification October 16, 2017

Table 19—Counter field properties (Continued)

Property Behavior/Application Type Dynamic?
decrsatu- Indicates the counter saturates in the decrementing direction. A compar- | boolean, Yes
rate ison value or the result of a comparison. See also: 9.8.2.1. bit, or ref-
erence
decrthresh- | Indicates the counter has a threshold in the decrementing direction. A boolean, Yes
old comparison value or the result of a comparison. See also: 9.8.2.1. bit, or ref-
erence

Indicates whether a property can be assigned dynamically.

9.8.2.1 Semantics

a)
b)

¢)

d)

g

h)

i)

k)

incrwidth and incrvalue are mutually exclusive (per counter).
decrwidth and decrvalue are mutually exclusive (per counter).

When incrsaturate has the Boolean value true, the incrementing saturate value is the maximum
value (2”(number of counter bits) -1) of the counter. When incrsaturate has the Boolean value
false, the counter does not saturate in the incrementing direction.

When incrthreshold has the Boolean value true, the incrementing threshold value is the maximum
value (2*(number of counter bits) -1) of the counter. When incrthreshold has the Boolean value
Talse, the counter does not have a threshold in the incrementing direction.

When decrsaturate has the Boolean value true, the decrementing saturate value is 0. When
decrsaturate has the Boolean value False, the counter does not saturate in the decrementing
direction.

When decrthreshold has the Boolean value true, the decrementing threshold value is 0. When
decrthreshold has the Boolean value False, the counter does not have a threshold in the decre-
menting direction.

incrthreshold/decrthreshold used on the left-hand side of an assignment in SystemRDL assigns
the counter’s threshold to the number or reference specified in the right-hand side of the assignment.

incrsaturate/decrsaturate used on the left-hand side of an assignment in SystemRDL assigns the
counter’s saturation property to the number or reference specified in the right-hand side of the
assignment.

incrthreshold/decrthreshold used on the right-hand side of an assignment in SystemRDL is refer-
encing the counter’s threshold output, which is a single bit value indicating whether the threshold
has been crossed. This value shall only be asserted to 1 when the value is greater than or equal to
incrthreshold/threshold or is less than or equal to decrthreshold.

incrsaturate/decrsaturate used on the right-hand side of an assignment in SystemRDL is referenc-
ing the counter’s saturate output, which is a single bit value indicating whether the saturation has
occurred. This value shall only be asserted to 1 when the value of the counter meets or exceeds the
saturation value specified.

All static values used in Table 19 shall fit within the width of the field. All references need to be the
same width.

9.8.2.2 Example

See Examples 1 - 31in 9.8.2.

Copyright © 2015 - 2017 Accellera. All rights reserved. 57
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

October 16, 2017 SystemRDL 2.0/ D9

9.9 Interrupt properties

Designs often have a need for interrupt signals for various reasons, e.g., so software can disable or enable
various blocks of logic when errors occur. Interrupts are unlike most field properties in that they operate on
both the register level and the field level. Any register which instantiates an interrupt field (a field with the
intr property specified) is considered an interrupt register. Each interrupt register has an associated
interrupt signal which is the logical OR of all interrupt fields in the register (post-masked/enabled if the
fields are masked or enabled). By default, this interrupt signal is inferred as an output; however, register files
and/or address maps can be used to further aggregate these interrupts (see Clause 12, Clause 13, and the
hierarchical interrupt example in 17.2). Interrupts may be masked, or enabled by other fields or externally
defined signals—they have an easy way of being turned on and off by software if desired.

By default, all interrupt fields have the stickybit property; this can be suppressed (using nonsticky) or
changed to sticky. The stickybit and sticky properties are similar as they both define a field as sticky,
meaning once hardware or software has written a one (1) into any bit of the field, the value is stuck until
software clears the value (using a write or clear on read). The difference between stickybit and sticky is
each bit in a stickybit field is handled individually, whereas sticky applies a sticky state to all bits in an
instantiated field (which is useful when designers need to store a multi-bit value, such as an address). For
single-bit fields, there is no difference between stickybit and sticky.

By default, all interrupts are level-triggered, i.e., the interrupt is triggered at the positive edge of the clock if
the next value of the interrupt field is asserted. Since interrupts are typically stickybit, the value is latched
and held until software clears the interrupt. The edge-interrupt triggering mechanisms (posedge, negedge,
and bothedge), like level-triggered interrupts, are synchronous.

A nonsticky interrupt is typically used for hierarchical interrupts, e.g., a design has a number of interrupt
registers (meaning a number of registers with one or more interrupt fields instantiated within). Rather than
promoting a number of interrupt signals, the developer can specify an aggregate interrupt register (typically
unmasked, though a mask/enable may be specified) containing the same number of fields as there are
interrupt signals to aggregate. Each field is defined as a nonsticky interrupt and the next value of each
interrupt is directly assigned an interrupt pin for each interrupt register to be aggregated. Interrupt types are
defined with modifiers to the intr property. These modifiers are not booleans and are only valid in
conjunction with the intr property. The nonsticky modifier can be used in conjunction with posedge,
negedge, bothedge, and level.

The syntax for a interrupt property modifiers appears as follows.

[nonsticky] [posedge | negedge | bothedge | level] intr;

Table 20 lists and describes the available interrupt types.

Table 20—Interrupt types

Interrupt Description

posedge Interrupt when next goes from low to high.

negedge Interrupt when next goes from high to low.

bothedge Interrupt when next changes value.

level Interrupt while the next value is asserted and main-
tained (the default).

nonsticky Defines a non-sticky (hierarchical) interrupt; the associ-
ated interrupt field shall not be locked. This modifier can
be specified in conjunction with the other interrupt
types.

58 Copyright © 2015 - 2017 Accellera. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Public Review Specification October 16, 2017

Furthermore, there are additional interrupt properties that can be used to mask or enable an interrupt. The
enable, mask, haltenable, and haltmask properties (see Table 21) are all properties of type reference that
are used to point to other fields or signals in the SystemRDL description. The mask and haltmask
properties can be assigned to fields and used to control the propagation of an interrupt. If an interrupt bit is
set and connected to a mask/enable, the interrupt’s final value is gated by the mask/enable. The logical
description of this operation is

final interrupt value = interrupt value & enable;

final interrupt value = interrupt value & !mask;

final halt interrupt value = interrupt value & haltenable;

final halt interrupt value = interrupt value & 'haltmask.

//Further information on interrupts and their behavior as well a more complete
//example can be found in 17.2.

Example

addrmap top {
reg block_int_r {
name = "Example Block Interrupt Register";
desc = "This is an example of an IP Block with 3 iInt events. 2
of these events are non fatal
and the third event multi_bit_ecc_error is fatal";

default hw=w; // HW can Set int only
default sw=rw; // SW can clear
default woclr; // Clear is via writing a 1

field {
desc = "A Packet with a CRC Error has been received';
level intr;

} crc_error = 0x0;

field {
desc = "A Packet with an invalid length has been received";
level intr;

} len_error = 0x0;

field {
desc="An uncorrectable multi-bit ECC error has been received";
level intr;

} multi_bit_ecc_error = 0 ;

}; 7/ End of Reg: block_int

reg block_int_en_r {
name = "Example Block Interrupt Enable Register";
desc = "This is an example of an IP Block with 3 int events';

default hw=na; // HW can"t access the enables
default sw=rw; // SW can control them

field {
desc = "Enable: A Packet with a CRC Error has been received";
} crc_error = 0x1;

field {
desc = "Enable: A Packet with an invalid length has been
received";
} len_error = 0x1;

Copyright © 2015 - 2017 Accellera. All rights reserved. 59
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

October 16, 2017 SystemRDL 2.0/ D9

}

field {
desc = "Enable: A Packet with an invalid length has been received";/
/ Mask this off as it"s a fatal interrupt
} multi_bit_ecc_error = 0x0;
}:; /77 End of Reg: block_int_en_r

reg block halt_en_r {
name = “Example Block Halt Enable Register';
desc = "This is an example of an IP Block with 3 int events';

default hw=na; // HW can"t access the enables
default sw=rw; // SW can control them

field {
desc = "Enable: A Packet with a CRC Error has been received";
} crc_error = 0x0; // not a fatal error do not halt
field {
desc = "Enable: A Packet with an invalid length has been received";
} len_error = 0x0; // not a fatal error do not halt
field {
desc = "Enable: A Packet with an invalid length has been received";
} multi_bit_ecc_error = 0x1; // fatal error that will

cause device to halt
}:; /77 End of Reg: block_halt_en_r

// Block A Registers

block_iInt r block_a_int; // Instance the Leaf Int Register
block_int_en_r block_a_int_en; // Instance the corresponding Int
//Enable Register
block_halt_en_r block_a halt_en; // Instance the corresponding halt
// enable register

// This block connects the int bits to their corresponding int enables and

// halt enables

block _a _int.crc_error->enable = block a int_en.crc_error;

block_a_int._len_error->enable = block_a_int_en.len_error;

block_a_int.multi_bit_ecc_error->enable =
block_a_int_en.multi_bit_ecc_error;

block_a_int.crc_error->haltenable = block_a halt_en.crc_error;

block _a _int.len_error->haltenable = block a halt_en.len_error;

block_a_int.multi_bit_ecc_error->haltenable =
block_a_halt_en_.multi_bit_ecc_error;

Table 21 defines the interrupt properties.

Table 21—Field access interrupt properties

Property Behavior/Application Type Dynamic?®
intr Interrupt, part of interrupt logic for a register. boolean Yes
enable Defines an interrupt enable (the inverse of mask); i.e., which bits in an reference Yes

interrupt field are used to assert an interrupt.

mask

60

Defines an interrupt mask (the inverse of enable); i.e., which bits in an reference Yes
interrupt field are not used to assert an interrupt.

Copyright © 2015 - 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Public Review Specification

Table 21—Field access interrupt properties (Continued)

October 16, 2017

Property Behavior/Application Type Dynamic?

haltenable Defines a halt enable (the inverse of haltmask); i.e., which bits in an reference Yes
interrupt field are set to de-assert the halt out.

haltmask Defines a halt mask (the inverse of haltenable); i.e., which bits in an reference Yes
interrupt field are set to assert the halt out.

sticky Defines the entire field as stickys; i.e., the value of the associated inter- boolean Yes
rupt field shall be locked until cleared by software (write or clear on
read).

stickybit Defines each bit in a field as sticky (the default); i.e., the value of each | boolean Yes
bit in the associated interrupt field shall be locked until the individual
bits are cleared by software (write or clear on read).

Indicates whether a property can be assigned dynamically.

9.9.1 Semantics

a) enable and mask are mutually exclusive.
b) haltenable and haltmask are mutually exclusive.

¢) nonsticky, sticky, and stickybit are mutually exclusive.

d) The sticky and stickybit properties are normally used in the context of interrupts, but may be used

in other contexts as well.

e) Assignments of signals or fields to the enable, mask, haltenable, and haltmask properties shall be

of the same bit width as the field.

f) posedge, negedge, bothedge, and level are only valid if intr is true and can only be specified as

modifiers to the intr property—they cannot be specified by themselves.

g) posedge, negedge, bothedge, and level are mutually exclusive.
9.9.2 Example
This example illustrates the use of sticky and stickybit interrupts.
field { level intr; } some_int=0;
field {} some_mask = 17b1l;

field {} some_enable = 1°bl;

some_int->mask = some_mask;
some_int->haltenable = some_enable;

field { level intr; rclr;} a_multibut_int[4]=0;
// Individual bits being set 1 will
// Accumulate as this is stickybit by default

field { posedge intr; sticky; woclr; } some_multibit_int[4]=0;
// This field will hold the first value written to it until its cleared by

// writing ones

9.10 Miscellaneous field properties

There are additional properties for fields which do not fall into any of the previous categories. This

subclause describes these additional miscellaneous properties.

Copyright © 2015 - 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

61

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

October 16, 2017 SystemRDL 2.0/ D9

a) The encode property enumerates a field definition for additional clarification purposes. encode can

only

be applied to a validly scoped component of type enum.

b) The precedence property specifies how contention issues are resolved during field updates, e.g., a

field
1)

2)

3)

which has hw=rw and sw=rw.

precedence = sw (the default) indicates software takes precedence over hardware on accessing
registers (over the hardware updates of type we, wel, incr, decr, hwset, and hwelr). This is a
field-only property and does not affect the other fields in the register.

precedence = hw indicates hardware takes precedence over software on accessing registers (on
the hardware updates of type we, wel, incr, decr, hwset, and hwelr). This is a field-only prop-
erty and does not affect the other fields in the register.

In some cases of collisions between hardware and software, both operations can be satisfied,
but this is beyond the scope of this document and such behavior is undefined.

c¢) The paritycheck property can be applied to a field to indicate it should be covered and checked by

parity.

1) The default is false (no check occurs).

2) Not all fields in a register need to have the same paritycheck property value.

3) Parity is calculated each cycle on the next value of every qualifying bit and the result is stored.
4) Parity is checked each cycle by comparing the generated parity on the current value of each

qualifying bit with the stored parity result. A parity_error output for the addrmap is set
to 1 when the generated value and stored parity do not match.

Table 22 details the miscellaneous field properties.

Table 22—Miscellaneous properties

Property Behavior/Application Type Dynamic?
encode Binds an enumeration to a field. reference Yes
to enum
precedence Controls whether precedence is granted to hardware (hw) or software prece- Yes
when contention occurs (sw). dencetype
paritycheck | Indicates whether this field is to be checked by parity. boolean No

Indicates whether a property can be assigned dynamically.

9.10.1 Semantics

a) An encode property shall be assigned to an enum type.

b) The enumeration’s values shall fit inside the field width.

9.10.2 Example

This example shows paritycheck, precedence, and encode. Here hdrPreamble is covered by and
checked by parity, while hdrType is not.

enum cfg_header_type_enum {

normal = 7"h00 { desc = "Type 0 Configuration Space Header™; };
pci_bridge = 7°h01 { desc = "PCl to PCI Bridge"™; };
cardbus_bridge = 7"h10 { desc = "PCl to CardBus Bridge'; };
}:
field {

62

hw = rw; sw = rw;

Copyright © 2015 - 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Public Review Specification October 16, 2017

precedence = sw;
encode = cfg_header_type_enum;
} hdrType [6:0]=0;

field {
hw = rw; sw = rw;
paritycheck;

} hdrPreamble [15:8]=0;

Copyright © 2015 - 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

63

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

October 16, 2017

64

SystemRDL 2.0/ D9

Copyright © 2015 - 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Public Review Specification October 16, 2017

10. Register component

In SystemRDL, a register is defined as a set of one or more SystemRDL field instances that are atomically
accessible by software at a given address. A register definition specifies its width and the types and sizes of
the fields that fit within that width (the register file and address map components determine address
allocation; see Clause 12 and Clause 13).

Registers can be instantiated in three forms.

— internal implies all register logic is created by the SystemRDL compiler for the instantiation (the
default form).

— external signifies the register/memory is implemented by the designer and the interface is inferred
from instantiation.

— alias allows software to access another register with different properties (i.e., read, write, woclr,
etc.). Alias registers are used where designers want to allow alternate software access to registers
and memories. SystemRDL allows designers to specify alias registers for internal or external regis-
ters.

10.1 Defining and instantiating registers

Register components (reg) have the same definition and instantiation syntax as other SystemRDL
components; see 5.1. The following semantics apply for all registers.

a) Within a register, the only components that can be instantiated are field components, signals, and
constraints.

b) Within a register, the only components that can be defined are field components, enums, con-
straints and signals.

c) Atleast one field shall be instantiated within a register.

d) Two field instances shall not occupy overlapping bit positions within a register unless one field is
read-only and the other field is write-only.

e) Field instances shall not occupy a bit position exceeding the MSB of the register. The default width
of a register (regwidth) is 32 bits.

f) All registers shall have a width = 2N, where N >=3.

g) Field instances that do not have explicit bit positions specified are automatically inferred based on
the addrmap mode of Isb0 (the default) or msb0.

h) Registers shall not overlap, unless one contains read-only fields and the other contains only write-
only or write-once-only fields.

10.2 Instantiating registers

All register instantiations follow the same syntax and semantics, with minor differences depending on the
instantiated register’s internal or external state. Unless specified as external (see 10.4), registers are, by
default, internal.

a) A definitive register instantiation appears as follows.

[external] reg_name [#(parameter_instance [, parameter_instance]*)]
reg_instance_element [, reg_instance_element]* ;

where

1) reg_name is the user-specified register name.

2) parameter_instance is specified as follows (see 5.1.2 a).
.param_name(param_val)

Copyright © 2015 - 2017 Accellera. All rights reserved. 65
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

October 16, 2017 SystemRDL 2.0/ D9

3) reg_instance_element is defined as follows.

reg_instance_name [{[constant_expression]}* [addr_alloc]
where
i) reg_instance_name is the user-specified name for instantiation of the register.
il) constant_expression is an expression that resolves to a longint unsigned.

iii) [constant_expression] specifies the size of the instantiated reg array (optionally multidi-
mensional).

iv) addr_alloc is an address allocation operator (see 5.1.2.3).
v) When using multiple-dimensions, the last subscript increments the fastest.
b) An anonymous definition (and instantiation) of a register appears as follows.
reg {[reg_body]} [external] reg_instance_element [, reg_instance_element]*;
where

1) reg_body is as described in 5.1.1, subject to the following limitations.

i) Component definitions are limited to field, constraint, signal, and enum components.
ii) Component instantiations are limited to field, constraint, and signal instances.

2) reg_instance_element is the description of the register instantiation attributes, as defined in
10.2 a 3.

10.3 Instantiating internal registers
Registers whose implementation can be built by a SystemRDL compiler are called internal registers.
Example
This example illustrates the definition and instantiation of internal registers.
reg myReg { field {} data[31:0]; };

myReg intReg; // single internal register
myReg intArray[32]; // internal register array of size 32

10.4 Instantiating external registers

SystemRDL can describe a register’s implementation as external, which is applicable for large arrays of
registers and provides an alternate implementation to what a SystemRDL compiler might provide. External
registers are identical to internal registers, except the actual implementation of the register is not created by
the compiler and the fields of an external register are not inferred to be implemented as wires and flip-flops.

Registers shall be instantiated as external registers by placing the keyword external before the register type
name or by instantiating the component as described in 10.2.

Example
This example illustrates the definition and instantiation of external registers.
reg myReg { field {} data[31:0]; };

external myReg extReg; // single external register
external myReg extArray[32]; // external register array of size 32

66 Copyright © 2015 - 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Public Review Specification October 16, 2017

10.5 Instantiating alias registers

An alias register is a register that appears in multiple locations of the same address map. It is physically
implemented as a single register such that a modification of the register at one address location appears at all
the locations within the address map. The accessibility of this register may be different in each location of
the address block.

Alias registers are allocated addresses like physical registers and are decoded like physical registers, but
they perform these operations on a previously instantiated register (called the primary register). Since alias
registers are not physical, hardware access and other hardware operation properties are not used. Software
access properties for the alias register can be different from the primary register.

10.5.1 Semantics

Registers shall be instantiated as alias registers by placing the keyword alias before the register type name.
a) An instantiation of an alias register appears as follows.
reg_name reg_primary_inst;
alias reg_primary_inst reg_name reg_instance;
where
1) reg_name is the user-specified register name.
2) reg_instance is the user-specified name for instantiation of the component.
3) reg_primary_inst is the primary register to which the alias is bound

b) Every field in the alias register needs to have the same instance name as a field in the primary regis-
ter (though the field type may differ) and the two fields shall have the same position and size in each
(corresponding) register.

¢) The alias register is not required to have all the fields from the primary register.
d) The alias register shall have the same width as the primary register.

e) Only the following SystemRDL properties may be different in an alias: desc, name, onread,
onwrite, rclr, rset, sw, woclr, woset, and any user-defined properties.

f) Ifthe alias instance type (internal or external) is specified, it shall match the primary register
instance type. If the alias instance type not specified, it uses the primary register instance type.

10.5.2 Example

This example shows the usage of register aliasing and how the primary register and its alias can have
different properties.

reg some_intr_r { field { level intr; hw=w; sw=r; woclr; } some_event; };
reg some_intr_rw { field { level intr; hw=w; sw=rw; } some_event; };
addrmap foo {
some_intr_r eventl;
// Create an alias for the DV team to use and modify its properties
// so that DV can for interrupt events and allow more rigorous structural
// testing of the interrupt.
alias eventl some_intr_r eventl for_dv;
eventl_for_dv.some_event->sw=rw;
eventl_ for_dv.some_event->woclr = false;

};
The al 1as above could be done with a different register type as well, without dynamic assigns.

alias eventl some_intr_rw eventl_ for_dv;

Copyright © 2015 - 2017 Accellera. All rights reserved. 67
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

October 16, 2017 SystemRDL 2.0/ D9

10.6 Register properties

Table 23 lists and describes the register properties.

Table 23—Register properties

Property Implementation/Application Type Dynamic?
regwidth Specifies the bit-width of the register (power of two). longint No
unsigned
accesswidth | Specifies the minimum software access width (power of two) operation | longint Yes
that may be performed on the register. unsigned
errextbus The associated register has error input. boolean No
intr Represents the inclusive OR of all the interrupt bits in a register after N/A No

any field enable and/or field mask logic has been applied.

halt Represents the inclusive OR of all the interrupt bits in a register after N/A No
any field haltenable and/or field haltmask logic has been applied.

shared Defines a register as being shared in different address maps. This is only | boolean No
valid for register components and shall only be applied to shared com-
ponents. See 13.5 for more information.

#Indicates whether a property can be assigned dynamically.
10.6.1 Semantics

a) All registers shall have a regwidth = 2N, where N >=3.

b) All registers shall have a accesswidth = 2N, where N >=3.

c) The value of the accesswidth property shall not exceed the value of the regwidth property.
d) The default value of the accesswidth property shall be identical to the width of the register.
e) Partial software reads of all fields without read side-effects are valid.

f) Any field that is software-writable or clear on read shall not span multiple software accessible sub-
words (e.g., a 64-bit register with a 32-bit access width may not have a writable field with bits in
both the upper and lower half of the register).

g) If a register instance is not explicitly assigned an address, a compiler needs to automatically assign
the address (see 13.4). Addressing is inherited from the enclosing lexical scope and applies to any
direct child instances.

h) errextbus is only valid for external registers. It specifies an external register implementation indi-
cating that a transaction terminated with an error. This error status is incorporated in the addrmap
implementation transaction error indication.

10.6.2 Example
These are examples of using register properties.

reg my64bitReg { regwidth = 64;
field {} a[63:0]=0;

}:

reg my32bitReg { regwidth = 32;
accesswidth = 16;
field {} a[16]=0;
field {} b[16]=0;

68 Copyright © 2015 - 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Public Review Specification October 16, 2017

10.7 Understanding field ordering in registers

Users can specify bit ordering implicitly and explicitly in two different ways. These approaches are called
msb0 and Isb0 in SystemRDL (see Table 26). Users who explicitly specify bit indexes when instantiating
fields in registers do not need to specify one of these attributes, as the explicit indexes imply one of these bit
ordering schemes. See also Clause 17.

a) The syntax:

field_type field_instance [high:low]

implies the use of Isb0 ordering (the default)
b) Alternately:

field_type field_instance [low:high]
implies the use of msb0 ordering

where

1) low and high are unsizedNumerics;

2) low == high implies a single bit field at the specified location;
3) for multi-bit fields, low < high.

4) The left-value is the index of the most significant bit of the field; the right-value is the index of
is the least significant bit of the field.

If a form specifying only a field’s size is used, then any fields are packed contiguously, end-to-end, starting
at index O for Isb0 registers and starting at index regwidth-1 for msb0 registers.

10.7.1 Semantics

a) Both the [low:high] and [high: low] bit specification forms shall not be used together in the
same register.

b) Aslong as all the registers in an address map are consistently msb0 or Isb0, no explicit msb0 or Isb0
property needs to be defined.

¢) Setting IsbO=true implies msbO=Fal se; setting msbO=true implies 1 sbO=False.
10.7.2 Examples

This example shows how fields are packed when using Isb0 bit ordering.

Isb0;
reg {

field {} A; 7/ Single bit from 0 to O
field {} B[3]; // 3 bits from 3:1
// 4 bits from 7 to 4 are reserved and unused
field {} C[15:8]; // 8 Bits from 15 to 8
field {} C[5]; // 5 Bits from 20 to 16
} regA;

This example shows how fields are packed when using msb0 bit ordering.

msb0;

reg {
field {3} A; 7/ Single bit from 31 to 31
field {} B[3]; 7/ 3 bits from 28 to 30
// 12 bits from 16 to 27 are reserved and unused
field {} C[8:15]; // 8 Bits from 8 to 15

Copyright © 2015 - 2017 Accellera. All rights reserved. 69
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

October 16, 2017 SystemRDL 2.0/ D9

field {} C[5]; // 5 Bits from 3 to 7
} regA;

10.8 Understanding interrupt registers

As discussed in 9.9, the field property intr also affects registers. Any register that contains an interrupt field
has two implied properties: intr and halt. These properties are outputs of the register. The intr register
property represents the inclusive OR of all the interrupt bits in a register after any field enable and/or field
mask logic has been applied. The halt register property represents the inclusive OR of all the interrupt bits in
a register after any field haltenable and/or field haltmask logic has been applied.

10.8.1 Semantics

a) The intr and halt register properties are outputs; they should only occur on the right-hand side of an
assignment in SystemRDL.

b) The intr property shall always be present on a intr register even if no mask or enables are specified.

¢) The halt property shall only be present if haltmask or haltenable is specified on at least one field in
the register.

10.8.2 Example
This example connects an implicit intr output property to another field.

reg {
field { intr; } some_intr;
field { intr; } some_other_intr;
} some_intr_reg;
reg {
field {3} a;
} some_status_reg;
some_status_reg.a->next = some_intr_reg->intr;

70 Copyright © 2015 - 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Public Review Specification October 16, 2017

11. Memory component

A memory is an array of storage consisting of a number of entries of a given bit width. The physical memory
implementation is technology dependent and memories shall be external. Child instance within a memory
are virtual instances. A virtual instance does not have a physical implementation, but, it is a software view of
the memory data. A memory can contain instances of virtual registers and fields within a virtual register are
virtual fields.

11.1 Defining and instantiating memories

Memory components have the same definition as other SystemRDL components; see 5.1.1. Memories
introduce the concepts of address allocation and their supporting operators. These address allocation
operators are applied after the instance name of the component. All addressing in SystemRDL is done based
on byte addresses.

a) A definitive definition of a memory instantiation appears as follows.

[external] mem_name [#(parameter_instance [, parameter_instance]*)]
mem_instance_element [, mem_instance_element]* ;

where

1) mem_name is the user-specified memory name.

2) parameter_instance is specified as follows (see 5.1.2 a).
.param_name(param_val)

3) mem_instance_element is defined as follows.

mem_instance_element [{[constant_expression]}* [addr_alloc]
where
i) mem_instance_element is the user-specified name for instantiation of the memory.
ii) constant_expression is an expression that resolves to a longint unsigned.

iii) [constant_expression] specifies the size of the instantiated mem array (optionally multidi-
mensional).

iv) addr_alloc is an address allocation operator (see 5.1.2.3).
v) When using multiple-dimensions, the last subscript increments the fastest.
b) An anonymous definition (and instantiation) of a memory appears as follows.
mem {[mem_body]} external mem_instance_element [, mem_instance_element]* ;
where
1) mem_body is as described in 5.1.1, subject to the following limitations.
i) Component definitions are limited to field, reg, constraint, and enum components.
ii) Component instantiations are limited to reg and constraint instances.

2) mem_instance_element is the description of the memory instantiation attributes, as defined in
11.1a3.

11.2 Semantics

a) All mem instances shall have an external instance type specified.
b) Addresses in SystemRDL are always byte addresses.
¢) Within a memory, the only components that can be instantiated shall be virtual register components.

d) Memories can contain reg instances. Instances of reg instances within a memory are virtual regis-
ters.

Copyright © 2015 - 2017 Accellera. All rights reserved. 71
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

October 16, 2017 SystemRDL 2.0/ D9

2
h)

i
k)
D

Virtual register width is limited to the minimum power of two bytes, which can contain the memory
width, and all the virtual fields shall fit within the memory width.

Virtual registers, register files, and fields shall have the same software access (sw property value) as
the parent memory.

Virtual register and fields cannot have hardware properties.
Virtual fields cannot have software properties other sw.

The address space occupied by virtual registers shall be less than or equal to the address space pro-
vided by the memory.

Virtual registers cannot overlap.
Virtual register instances are optional.

A mem cannot be prefixed by alias.

11.3 Memory properties

Table 24 lists and describes the memory properties.

Table 24—Memory properties

Property Implementation/Application Type Dynamic?
mementries | The number of memory entries. longint No
unsigned
memwidth The memory entry bit width. longint No
unsigned
SW Programmer’s ability to read/write a memory. access Yes
type

Indicates whether a property can be assigned dynamically.

11.3.1 Semantics

a)
b)
¢)
d)

mementries shall be greater than O.
mementries defaults to 1.
memwidth shall be greater than O.

memwidth defaults to regwidth.

11.3.2 Example

This example shows an application of memory component properties.

72

mem Fifo_mem {

mement